from unittest.mock import patch import logging import pytest from haystack.nodes.prompt.invocation_layer import OpenAIInvocationLayer @pytest.fixture def load_openai_tokenizer(): with patch("haystack.nodes.prompt.invocation_layer.open_ai.load_openai_tokenizer") as mock_load_openai_tokenizer: yield mock_load_openai_tokenizer @pytest.fixture() def mock_open_ai_request(): with patch("haystack.nodes.prompt.invocation_layer.open_ai.openai_request") as mock_openai_request: yield mock_openai_request @pytest.mark.unit def test_default_api_base(mock_open_ai_request, load_openai_tokenizer): invocation_layer = OpenAIInvocationLayer(api_key="fake_api_key") assert invocation_layer.api_base == "https://api.openai.com/v1" assert invocation_layer.url == "https://api.openai.com/v1/completions" invocation_layer.invoke(prompt="dummy_prompt") assert mock_open_ai_request.call_args.kwargs["url"] == "https://api.openai.com/v1/completions" @pytest.mark.unit def test_custom_api_base(mock_open_ai_request, load_openai_tokenizer): invocation_layer = OpenAIInvocationLayer(api_key="fake_api_key", api_base="https://fake_api_base.com") assert invocation_layer.api_base == "https://fake_api_base.com" assert invocation_layer.url == "https://fake_api_base.com/completions" invocation_layer.invoke(prompt="dummy_prompt") assert mock_open_ai_request.call_args.kwargs["url"] == "https://fake_api_base.com/completions" @pytest.mark.unit def test_openai_token_limit_warning(mock_openai_tokenizer, caplog): invocation_layer = OpenAIInvocationLayer( model_name_or_path="text-ada-001", api_key="fake_api_key", api_base="https://fake_api_base.com", max_length=2045 ) with caplog.at_level(logging.WARNING): _ = invocation_layer._ensure_token_limit(prompt="This is a test for a mock openai tokenizer.") assert "The prompt has been truncated from" in caplog.text assert "and answer length (2045 tokens) fit within the max token limit (2049 tokens)." in caplog.text @pytest.mark.unit @pytest.mark.parametrize( "model_name,max_tokens_limit", [ ("text-davinci-003", 4097), ("gpt-3.5-turbo", 4096), ("gpt-3.5-turbo-16k", 16384), ("gpt-4-32k", 32768), ("gpt-4", 8192), ], ) def test_openai_token_limit_warning_not_triggered(caplog, mock_openai_tokenizer, model_name, max_tokens_limit): layer = OpenAIInvocationLayer( model_name_or_path=model_name, api_key="fake_api_key", api_base="https://fake_api_base.com", max_length=256 ) assert layer.max_tokens_limit == max_tokens_limit # the warning is not triggered because max_length is 256, our prompt is 11 tokens, and we have big context window _ = layer._ensure_token_limit(prompt="This is a test for a mock openai tokenizer.") assert not caplog.text @pytest.mark.unit @pytest.mark.parametrize( "model_name,max_tokens_limit", [ ("text-davinci-003", 4097), ("gpt-3.5-turbo", 4096), ("gpt-3.5-turbo-16k", 16384), ("gpt-4-32k", 32768), ("gpt-4", 8192), ], ) def test_openai_token_limit_warning_is_triggered(caplog, mock_openai_tokenizer, model_name, max_tokens_limit): layer = OpenAIInvocationLayer( model_name_or_path=model_name, api_key="fake_api_key", api_base="https://fake_api_base.com", max_length=int(max_tokens_limit) - 1, ) assert layer.max_tokens_limit == max_tokens_limit # the warning is triggered because max_length is one token smaller than context window and our prompt has 11 tokens _ = layer._ensure_token_limit(prompt="This is a test for a mock openai tokenizer.") # since we are truncating the prompt of 11 tokens, we should see a warning that only 1 token is left assert "The prompt has been truncated from 11 tokens to 1 tokens" in caplog.text @pytest.mark.unit def test_no_openai_organization(mock_open_ai_request, load_openai_tokenizer): invocation_layer = OpenAIInvocationLayer(api_key="fake_api_key") assert invocation_layer.openai_organization is None assert "OpenAI-Organization" not in invocation_layer.headers invocation_layer.invoke(prompt="dummy_prompt") assert "OpenAI-Organization" not in mock_open_ai_request.call_args.kwargs["headers"] @pytest.mark.unit def test_openai_organization(mock_open_ai_request, load_openai_tokenizer): invocation_layer = OpenAIInvocationLayer(api_key="fake_api_key", openai_organization="fake_organization") assert invocation_layer.openai_organization == "fake_organization" assert invocation_layer.headers["OpenAI-Organization"] == "fake_organization" invocation_layer.invoke(prompt="dummy_prompt") assert mock_open_ai_request.call_args.kwargs["headers"]["OpenAI-Organization"] == "fake_organization" @pytest.mark.unit def test_supports(load_openai_tokenizer): layer = OpenAIInvocationLayer(api_key="some_fake_key") assert layer.supports("ada") assert layer.supports("babbage") assert layer.supports("curie") assert layer.supports("davinci") assert layer.supports("text-ada-001") assert layer.supports("text-davinci-002") assert layer.supports("gpt-3.5-turbo-instruct") # the following model contains "ada" in the name, but it's not from OpenAI assert not layer.supports("ybelkada/mpt-7b-bf16-sharded")