import os from unittest.mock import patch, MagicMock, Mock import pytest from haystack.lazy_imports import LazyImport from haystack.errors import SageMakerConfigurationError from haystack.nodes.prompt.invocation_layer import SageMakerHFInferenceInvocationLayer with LazyImport() as boto3_import: from botocore.exceptions import BotoCoreError # create a fixture with mocked boto3 client and session @pytest.fixture def mock_boto3_session(): with patch("boto3.Session") as mock_client: yield mock_client @pytest.fixture def mock_prompt_handler(): with patch("haystack.nodes.prompt.invocation_layer.handlers.DefaultPromptHandler") as mock_prompt_handler: yield mock_prompt_handler @pytest.mark.unit def test_default_constructor(mock_auto_tokenizer, mock_boto3_session): """ Test that the default constructor sets the correct values """ layer = SageMakerHFInferenceInvocationLayer( model_name_or_path="some_fake_model", max_length=99, aws_access_key_id="some_fake_id", aws_secret_access_key="some_fake_key", aws_session_token="some_fake_token", aws_profile_name="some_fake_profile", aws_region_name="fake_region", ) assert layer.max_length == 99 assert layer.model_name_or_path == "some_fake_model" # assert mocked boto3 client called exactly once mock_boto3_session.assert_called_once() # assert mocked boto3 client was called with the correct parameters mock_boto3_session.assert_called_with( aws_access_key_id="some_fake_id", aws_secret_access_key="some_fake_key", aws_session_token="some_fake_token", profile_name="some_fake_profile", region_name="fake_region", ) @pytest.mark.unit def test_constructor_with_model_kwargs(mock_auto_tokenizer, mock_boto3_session): """ Test that model_kwargs are correctly set in the constructor and that model_kwargs_rejected are correctly filtered out """ model_kwargs = {"temperature": 0.7, "do_sample": True, "stream": True} model_kwargs_rejected = {"fake_param": 0.7, "another_fake_param": 1} layer = SageMakerHFInferenceInvocationLayer( model_name_or_path="some_fake_model", **model_kwargs, **model_kwargs_rejected ) assert layer.model_input_kwargs["temperature"] == 0.7 assert "do_sample" in layer.model_input_kwargs assert "fake_param" not in layer.model_input_kwargs assert "another_fake_param" not in layer.model_input_kwargs @pytest.mark.unit def test_invoke_with_no_kwargs(mock_auto_tokenizer, mock_boto3_session): """ Test that invoke raises an error if no prompt is provided """ layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="some_fake_model") with pytest.raises(ValueError, match="No prompt provided."): layer.invoke() @pytest.mark.unit def test_invoke_with_stop_words(mock_auto_tokenizer, mock_boto3_session): """ Test stop words are correctly passed to HTTP POST request """ stop_words = ["but", "not", "bye"] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="some_model", api_key="fake_key") with patch("haystack.nodes.prompt.invocation_layer.SageMakerHFInferenceInvocationLayer._post") as mock_post: # Mock the response, need to return a list of dicts mock_post.return_value = MagicMock(text='[{"generated_text": "Hello"}]') layer.invoke(prompt="Tell me hello", stop_words=stop_words) assert mock_post.called _, call_kwargs = mock_post.call_args assert call_kwargs["params"]["stopping_criteria"] == stop_words @pytest.mark.unit def test_short_prompt_is_not_truncated(mock_boto3_session): # Define a short mock prompt and its tokenized version mock_prompt_text = "I am a tokenized prompt" mock_prompt_tokens = mock_prompt_text.split() # Mock the tokenizer so it returns our predefined tokens mock_tokenizer = MagicMock() mock_tokenizer.tokenize.return_value = mock_prompt_tokens # We set a small max_length for generated text (3 tokens) and a total model_max_length of 10 tokens # Since our mock prompt is 5 tokens long, it doesn't exceed the # total limit (5 prompt tokens + 3 generated tokens < 10 tokens) max_length_generated_text = 3 total_model_max_length = 10 with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer): layer = SageMakerHFInferenceInvocationLayer( "some_fake_endpoint", max_length=max_length_generated_text, model_max_length=total_model_max_length ) prompt_after_resize = layer._ensure_token_limit(mock_prompt_text) # The prompt doesn't exceed the limit, _ensure_token_limit doesn't truncate it assert prompt_after_resize == mock_prompt_text @pytest.mark.unit def test_long_prompt_is_truncated(mock_boto3_session): # Define a long mock prompt and its tokenized version long_prompt_text = "I am a tokenized prompt of length eight" long_prompt_tokens = long_prompt_text.split() # We will truncate the prompt to make it fit into the model's max token limit truncated_prompt_text = "I am a tokenized prompt of length" # Mock the tokenizer to return our predefined tokens # convert tokens to our predefined truncated text mock_tokenizer = MagicMock() mock_tokenizer.tokenize.return_value = long_prompt_tokens mock_tokenizer.convert_tokens_to_string.return_value = truncated_prompt_text # We set a small max_length for generated text (3 tokens) and a total model_max_length of 10 tokens # Our mock prompt is 8 tokens long, so it exceeds the total limit (8 prompt tokens + 3 generated tokens > 10 tokens) max_length_generated_text = 3 total_model_max_length = 10 with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer): layer = SageMakerHFInferenceInvocationLayer( "some_fake_endpoint", max_length=max_length_generated_text, model_max_length=total_model_max_length ) prompt_after_resize = layer._ensure_token_limit(long_prompt_text) # The prompt exceeds the token limit, so it should be truncated by _ensure_token_limit assert prompt_after_resize == truncated_prompt_text @pytest.mark.unit def test_empty_model_name(): with pytest.raises(ValueError, match="cannot be None or empty string"): SageMakerHFInferenceInvocationLayer(model_name_or_path="") @pytest.mark.unit def test_streaming_init_kwarg(mock_auto_tokenizer, mock_boto3_session): """ Test stream parameter passed as init kwarg is correctly logged as not supported """ layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant", stream=True) with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"): layer.invoke(prompt="Tell me hello") @pytest.mark.unit def test_streaming_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session): """ Test stream parameter passed as invoke kwarg is correctly logged as not supported """ layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"): layer.invoke(prompt="Tell me hello", stream=True) @pytest.mark.unit def test_streaming_handler_init_kwarg(mock_auto_tokenizer, mock_boto3_session): """ Test stream_handler parameter passed as init kwarg is correctly logged as not supported """ layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant", stream_handler=Mock()) with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"): layer.invoke(prompt="Tell me hello") @pytest.mark.unit def test_streaming_handler_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session): """ Test stream_handler parameter passed as invoke kwarg is correctly logged as not supported """ layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"): layer.invoke(prompt="Tell me hello", stream_handler=Mock()) @pytest.mark.unit def test_supports_for_valid_aws_configuration(): """ Test that the SageMakerHFInferenceInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method """ mock_client = MagicMock() mock_client.describe_endpoint.return_value = {"EndpointStatus": "InService"} mock_session = MagicMock() mock_session.client.return_value = mock_client # Patch the class method to return the mock session with patch( "haystack.nodes.prompt.invocation_layer.aws_base.AWSBaseInvocationLayer.get_aws_session", return_value=mock_session, ): supported = SageMakerHFInferenceInvocationLayer.supports( model_name_or_path="some_sagemaker_deployed_model", aws_profile_name="some_real_profile" ) args, kwargs = mock_client.describe_endpoint.call_args assert kwargs["EndpointName"] == "some_sagemaker_deployed_model" args, kwargs = mock_session.client.call_args assert args[0] == "sagemaker-runtime" assert supported @pytest.mark.unit def test_supports_not_on_invalid_aws_profile_name(): """ Test that the SageMakerHFInferenceInvocationLayer raises SageMakerConfigurationError when the profile name is invalid """ with patch("boto3.Session") as mock_boto3_session: mock_boto3_session.side_effect = BotoCoreError() with pytest.raises(SageMakerConfigurationError, match="Failed to initialize the session"): SageMakerHFInferenceInvocationLayer.supports( model_name_or_path="some_fake_model", aws_profile_name="some_fake_profile" ) @pytest.mark.skipif( not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured" ) @pytest.mark.integration def test_supports_triggered_for_valid_sagemaker_endpoint(): """ Test that the SageMakerHFInferenceInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method """ model_name_or_path = os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT") assert SageMakerHFInferenceInvocationLayer.supports(model_name_or_path=model_name_or_path) @pytest.mark.skipif( not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured" ) @pytest.mark.integration def test_supports_not_triggered_for_invalid_iam_profile(): """ Test that the SageMakerHFInferenceInvocationLayer identifies an invalid SageMaker Inference endpoint (in this case because of an invalid IAM AWS Profile via the supports() method) """ assert not SageMakerHFInferenceInvocationLayer.supports(model_name_or_path="fake_endpoint") assert not SageMakerHFInferenceInvocationLayer.supports( model_name_or_path="fake_endpoint", aws_profile_name="invalid-profile" ) @pytest.mark.unit def test_dolly_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is dolly json response response = {"generated_texts": ["Berlin"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_dolly_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is dolly json response response = {"generated_texts": ["Berlin", "More elaborate Berlin"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "More elaborate Berlin"] @pytest.mark.unit def test_flan_t5_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is flan t5 json response response = {"generated_texts": ["berlin"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["berlin"] @pytest.mark.unit def test_gpt_j_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is gpt-j json response response = [[{"generated_text": "Berlin"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_gpt_j_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is gpt-j json response response = [[{"generated_text": "Berlin"}, {"generated_text": "Berlin 2"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"] @pytest.mark.unit def test_mpt_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is mpt json response response = [[{"generated_text": "Berlin"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_mpt_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is mpt json response response = [[{"generated_text": "Berlin"}, {"generated_text": "Berlin 2"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"] @pytest.mark.unit def test_open_llama_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is open-llama json response response = {"generated_texts": ["Berlin"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_open_llama_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is open-llama json response response = {"generated_texts": ["Berlin", "Berlin 2"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"] @pytest.mark.unit def test_pajama_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is pajama json response response = [[{"generated_text": ["Berlin"]}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_pajama_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is pajama json response response = [[{"generated_text": "Berlin"}, {"generated_text": "Berlin 2"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"] @pytest.mark.unit def test_flan_ul2_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is flan-ul2 json response response = {"generated_texts": ["Berlin"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_flan_ul2_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is flan-ul2 json response response = {"generated_texts": ["Berlin", "Berlin 2"]} layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"] @pytest.mark.unit def test_gpt_neo_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is gpt neo json response response = [[{"generated_text": "Berlin"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_gpt_neo_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is gpt neo json response response = [[{"generated_text": "Berlin"}, {"generated_text": "Berlin 2"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"] @pytest.mark.unit def test_bloomz_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is bloomz json response response = [[{"generated_text": "Berlin"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin"] @pytest.mark.unit def test_bloomz_multiple_response_parsing(mock_auto_tokenizer, mock_boto3_session): # this is bloomz json response response = [[{"generated_text": "Berlin"}, {"generated_text": "Berlin 2"}]] layer = SageMakerHFInferenceInvocationLayer(model_name_or_path="irrelevant") assert layer._extract_response(response) == ["Berlin", "Berlin 2"]