--- title: "HTMLToDocument" id: htmltodocument slug: "/htmltodocument" description: "A component that converts HTML files to documents." --- # HTMLToDocument A component that converts HTML files to documents.
| | | | --- | --- | | **Most common position in a pipeline** | Before [PreProcessors](../preprocessors.mdx) , or right at the beginning of an indexing pipeline | | **Mandatory run variables** | `sources`: A list of HTML file paths or [`ByteStream`](../../concepts/data-classes.mdx#bytestream) objects | | **Output variables** | `documents`: A list of documents | | **API reference** | [Converters](/reference/converters-api) | | **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/converters/html.py |
## Overview The `HTMLToDocument` component converts HTML files into documents. It can be used in an indexing pipeline to index the contents of an HTML file into a Document Store or even in a querying pipeline after the [`LinkContentFetcher`](../fetchers/linkcontentfetcher.mdx). The `HTMLToDocument` component takes a list of HTML file paths or [`ByteStream`](../../concepts/data-classes.mdx#bytestream) objects as input and converts the files to a list of documents. Optionally, you can attach metadata to the documents through the `meta` input parameter. When you initialize the component, you can optionally set `extraction_kwargs`, a dictionary containing keyword arguments to customize the extraction process. These are passed to the underlying Trafilatura `extract` function. For the full list of available arguments, see the [Trafilatura documentation](https://trafilatura.readthedocs.io/en/latest/corefunctions.html#extract). ## Usage ### On its own ```python from pathlib import Path from haystack.components.converters import HTMLToDocument converter = HTMLToDocument() docs = converter.run(sources=[Path("saved_page.html")]) ``` ### In a pipeline Here's an example of an indexing pipeline that writes the contents of an HTML file into an `InMemoryDocumentStore`: ```python from haystack import Pipeline from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack.components.converters import HTMLToDocument from haystack.components.preprocessors import DocumentCleaner from haystack.components.preprocessors import DocumentSplitter from haystack.components.writers import DocumentWriter document_store = InMemoryDocumentStore() pipeline = Pipeline() pipeline.add_component("converter", HTMLToDocument()) pipeline.add_component("cleaner", DocumentCleaner()) pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5)) pipeline.add_component("writer", DocumentWriter(document_store=document_store)) pipeline.connect("converter", "cleaner") pipeline.connect("cleaner", "splitter") pipeline.connect("splitter", "writer") pipeline.run({"converter": {"sources": file_names}}) ```