---
title: "STACKITDocumentEmbedder"
id: stackitdocumentembedder
slug: "/stackitdocumentembedder"
description: "This component enables document embedding using the STACKIT API."
---
# STACKITDocumentEmbedder
This component enables document embedding using the STACKIT API.
| | |
| --- | --- |
| **Most common position in a pipeline** | Before a [DocumentWriter](../writers/documentwriter.mdx) in an indexing pipeline |
| **Mandatory init variables** | `model`: The model used through the STACKIT API |
| **Mandatory run variables** | `documents`: A list of documents to be embedded |
| **Output variables** | `documents`: A list of documents enriched with embeddings |
| **API reference** | [STACKIT](/reference/integrations-stackit) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/stackit |
## Overview
`STACKITDocumentEmbedder` enables document embedding models served by STACKIT through their API.
### Parameters
To use the `STACKITDocumentEmbedder`, ensure you have set a `STACKIT_API_KEY` as an environment variable. Alternatively, provide the API key as an environment variable with a different name or a token by setting `api_key` and using Haystack’s [secret management](../../concepts/secret-management.mdx).
Set your preferred supported model with the `model` parameter when initializing the component. See the full list of all supported models on the [STACKIT website](https://docs.stackit.cloud/stackit/en/models-licenses-319914532.html).
Optionally, you can change the default `api_base_url`, which is `"https://api.openai-compat.model-serving.eu01.onstackit.cloud/v1"`.
You can pass any text generation parameters valid for the STACKIT Chat Completion API directly to this component with the `generation_kwargs` parameter in the init or run methods.
Then component needs a list of documents as input to operate.
## Usage
Install the `stackit-haystack` package to use the `STACKITDocumentEmbedder` and set an environment variable called `STACKIT_API_KEY` to your API key.
```shell
pip install stackit-haystack
```
### On its own
```python
from haystack_integrations.components.embedders.stackit import STACKITDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = STACKITDocumentEmbedder(model="intfloat/e5-mistral-7b-instruct")
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
## [0.0215301513671875, 0.01499176025390625, ...]
```
### In a pipeline
You can also use `STACKITDocumentEmbedder` in your pipeline in a following way.
```python
from haystack import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.stackit import STACKITTextEmbedder, STACKITDocumentEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore()
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
document_embedder = STACKITDocumentEmbedder(model="intfloat/e5-mistral-7b-instruct")
documents_with_embeddings = document_embedder.run(documents)['documents']
document_store.write_documents(documents_with_embeddings)
text_embedder = STACKITTextEmbedder(model="intfloat/e5-mistral-7b-instruct")
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", text_embedder)
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Where does Wolfgang live?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
## Document(id=..., content: 'My name is Wolfgang and I live in Berlin', score: ...)
```
You can find more usage examples in the STACKIT integration [repository](https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/stackit/examples) and its [integration page](https://haystack.deepset.ai/integrations/stackit).