--- title: "ElasticsearchDocumentStore" id: elasticsearch-document-store slug: "/elasticsearch-document-store" description: "Use an Elasticsearch database with Haystack." --- # ElasticsearchDocumentStore Use an Elasticsearch database with Haystack.
| | | | --- | --- | | API reference | [Elasticsearch](/reference/integrations-elasticsearch) | | GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch |
ElasticsearchDocumentStore is excellent if you want to evaluate the performance of different retrieval options (dense vs. sparse) and aim for a smooth transition from PoC to production. It features the approximate nearest neighbours (ANN) search. ### Initialization [Install](https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html) Elasticsearch and then [start](https://www.elastic.co/guide/en/elasticsearch/reference/current/starting-elasticsearch.html) an instance. Haystack supports Elasticsearch 8. If you have Docker set up, we recommend pulling the Docker image and running it. ```shell docker pull docker.elastic.co/elasticsearch/elasticsearch:8.11.1 docker run -p 9200:9200 -e "discovery.type=single-node" -e "ES_JAVA_OPTS=-Xms1024m -Xmx1024m" -e "xpack.security.enabled=false" elasticsearch:8.11.1 ``` As an alternative, you can go to [Elasticsearch integration GitHub](https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch) and start a Docker container running Elasticsearch using the provided `docker-compose.yml`: ```shell docker compose up ``` Once you have a running Elasticsearch instance, install the `elasticsearch-haystack` integration: ```shell pip install elasticsearch-haystack ``` Then, initialize an `ElasticsearchDocumentStore` object that’s connected to the Elasticsearch instance and writes documents to it: ```python from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore from haystack import Document document_store = ElasticsearchDocumentStore(hosts = "http://localhost:9200") document_store.write_documents([ Document(content="This is first"), Document(content="This is second") ]) print(document_store.count_documents()) ``` ### Supported Retrievers [`ElasticsearchBM25Retriever`](../pipeline-components/retrievers/elasticsearchbm25retriever.mdx): A keyword-based Retriever that fetches documents matching a query from the Document Store. [`ElasticsearchEmbeddingRetriever`](../pipeline-components/retrievers/elasticsearchembeddingretriever.mdx): Compares the query and document embeddings and fetches the documents most relevant to the query.