--- title: "QdrantDocumentStore" id: qdrant-document-store slug: "/qdrant-document-store" description: "Use the Qdrant vector database with Haystack." --- # QdrantDocumentStore Use the Qdrant vector database with Haystack.
| | | | --- | --- | | API reference | [Qdrant](/reference/integrations-qdrant) | | GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/qdrant |
Qdrant is a powerful high-performance, massive-scale vector database. The `QdrantDocumentStore` can be used with any Qdrant instance, in-memory, locally persisted, hosted, and the official Qdrant Cloud. ### Installation You can simply install the Qdrant Haystack integration with: ```shell pip install qdrant-haystack ``` ### Initialization The quickest way to use `QdrantDocumentStore` is to create an in-memory instance of it: ```python from haystack.dataclasses.document import Document from haystack_integrations.document_stores.qdrant import QdrantDocumentStore document_store = QdrantDocumentStore( ":memory:", recreate_index=True, return_embedding=True, wait_result_from_api=True, ) document_store.write_documents([ Document(content="This is first", embedding=[0.0]*5), Document(content="This is second", embedding=[0.1, 0.2, 0.3, 0.4, 0.5]) ]) print(document_store.count_documents()) ``` :::warning Collections Created Outside Haystack When you create a `QdrantDocumentStore` instance, Haystack takes care of setting up the collection. In general, you cannot use a Qdrant collection created without Haystack with Haystack. If you want to migrate your existing collection, see the sample script at https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/qdrant/src/haystack_integrations/document_stores/qdrant/migrate_to_sparse.py. ::: You can also connect directly to [Qdrant Cloud](https://cloud.qdrant.io/login) directly. Once you have your API key and your cluster URL from the Qdrant dashboard, you can connect like this: ```python from haystack.dataclasses.document import Document from haystack_integrations.document_stores.qdrant import QdrantDocumentStore from haystack.utils import Secret document_store = QdrantDocumentStore( url="https://XXXXXXXXX.us-east4-0.gcp.cloud.qdrant.io:6333", index="your_index_name", embedding_dim=1024, # based on the embedding model recreate_index=True, # enable only to recreate the index and not connect to the existing one api_key = Secret.from_token("YOUR_TOKEN") ) document_store.write_documents([ Document(content="This is first", embedding=[0.0]*5), Document(content="This is second", embedding=[0.1, 0.2, 0.3, 0.4, 0.5]) ]) print(document_store.count_documents()) ``` :::tip More information You can find more ways to initialize and use QdrantDocumentStore on our [integration page](https://haystack.deepset.ai/integrations/qdrant-document-store). ::: ### Supported Retrievers - [`QdrantEmbeddingRetriever`](../pipeline-components/retrievers/qdrantembeddingretriever.mdx): Retrieves documents from the `QdrantDocumentStore` based on their dense embeddings (vectors). - [`QdrantSparseEmbeddingRetriever`](../pipeline-components/retrievers/qdrantsparseembeddingretriever.mdx): Retrieves documents from the `QdrantDocumentStore` based on their sparse embeddings. - [`QdrantHybridRetriever`](../pipeline-components/retrievers/qdranthybridretriever.mdx): Retrieves documents from the `QdrantDocumentStore` based on both dense and sparse embeddings. :::note Sparse Embedding Support To use Sparse Embedding support, you need to initialize the `QdrantDocumentStore` with `use_sparse_embeddings=True`, which is `False` by default. If you want to use Document Store or collection previously created with this feature disabled, you must migrate the existing data. You can do this by taking advantage of the `migrate_to_sparse_embeddings_support` utility function. ::: ## Additional References 🧑‍🍳 Cookbook: [Sparse Embedding Retrieval with Qdrant and FastEmbed](https://haystack.deepset.ai/cookbook/sparse_embedding_retrieval)