--- title: "STACKITChatGenerator" id: stackitchatgenerator slug: "/stackitchatgenerator" description: "This component enables chat completions using the STACKIT API." --- # STACKITChatGenerator This component enables chat completions using the STACKIT API.
| | | | --- | --- | | **Most common position in a pipeline** | After a [`ChatPromptBuilder`](../builders/chatpromptbuilder.mdx) | | **Mandatory init variables** | `model`: The model used through the STACKIT API | | **Mandatory run variables** | `messages`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx)  objects | | **Output variables** | `replies`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx) objects

`meta`: A list of dictionaries with the metadata associated with each reply (such as token count, finish reason, and so on) | | **API reference** | [STACKIT](/reference/integrations-stackit) | | **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/stackit |
## Overview `STACKITChatGenerator` enables text generation models served by STACKIT through their API. ### Parameters To use the `STACKITChatGenerator`, ensure you have set a `STACKIT_API_KEY` as an environment variable. Alternatively, provide the API key as another environment variable or a token by setting `api_key` and using Haystack’s [secret management](../../concepts/secret-management.mdx). Set your preferred supported model with the `model` parameter when initializing the component. See the full list of all supported models on the [STACKIT website](https://docs.stackit.cloud/stackit/en/models-licenses-319914532.html). Optionally, you can change the default `api_base_url`, which is `"https://api.openai-compat.model-serving.eu01.onstackit.cloud/v1"`. You can pass any text generation parameters valid for the STACKIT Chat Completion API directly to this component with the `generation_kwargs` parameter in the init or run methods. The component needs a list of `ChatMessage` objects to run. `ChatMessage` is a data class that contains a message, a role (who generated the message, such as `user`, `assistant`, `system`, `function`), and optional metadata. Find out more about it [ChatMessage documentation](../../concepts/data-classes/chatmessage.mdx). ### Streaming This ChatGenerator supports [streaming](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) the tokens from the LLM directly into the output. To do so, pass a function to the `streaming_callback` init parameter. ## Usage Install the `stackit-haystack` package to use the `STACKITChatGenerator`: ```shell pip install stackit-haystack ``` ### On its own ```python from haystack_integrations.components.generators.stackit import STACKITChatGenerator from haystack.dataclasses import ChatMessage generator = STACKITChatGenerator(model="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8") result = generator.run([ChatMessage.from_user("Tell me a joke.")]) print(result) ``` With multimodal inputs: ```python from haystack.dataclasses import ChatMessage, ImageContent from haystack_integrations.components.generators.stackit import STACKITChatGenerator llm = STACKITChatGenerator(model="meta-llama/Llama-3.2-11B-Vision-Instruct") image = ImageContent.from_file_path("apple.jpg") user_message = ChatMessage.from_user(content_parts=[ "What does the image show? Max 5 words.", image ]) response = llm.run([user_message])["replies"][0].text print(response) # Red apple on straw. ``` ### In a pipeline You can also use `STACKITChatGenerator` in your pipeline. ```python from haystack import Pipeline from haystack.components.builders import ChatPromptBuilder from haystack.dataclasses import ChatMessage from haystack_integrations.components.generators.stackit import STACKITChatGenerator prompt_builder = ChatPromptBuilder() llm = STACKITChatGenerator(model="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8") messages = [ChatMessage.from_user("Question: {{question}} \\n")] pipeline = Pipeline() pipeline.add_component("prompt_builder", prompt_builder) pipeline.add_component("llm", llm) pipeline.connect("prompt_builder.prompt", "llm.messages") result = pipeline.run({"prompt_builder": {"template_variables": {"question": "Tell me a joke."}, "template": messages}}) print(result) ``` For an example of streaming in a pipeline, refer to the examples in the STACKIT integration [repository](https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/stackit/examples) and on its dedicated [integration page](https://haystack.deepset.ai/integrations/stackit).