# SPDX-FileCopyrightText: 2022-present deepset GmbH # # SPDX-License-Identifier: Apache-2.0 from datetime import datetime from typing import Iterator from unittest.mock import AsyncMock, MagicMock, patch import pytest from openai import AsyncStream, Stream from openai.types import Reasoning from openai.types.chat import ChatCompletion, ChatCompletionChunk, chat_completion_chunk from openai.types.responses import ( Response, ResponseOutputItemAddedEvent, ResponseOutputMessage, ResponseOutputText, ResponseReasoningItem, ResponseReasoningSummaryTextDeltaEvent, ResponseTextDeltaEvent, ResponseUsage, ) from openai.types.responses.response_reasoning_item import Summary from openai.types.responses.response_usage import InputTokensDetails, OutputTokensDetails @pytest.fixture def mock_auto_tokenizer(): """ In the original mock_auto_tokenizer fixture, we were mocking the transformers.AutoTokenizer.from_pretrained method directly, but we were not providing a return value for this method. Therefore, when from_pretrained was called within HuggingFaceTGIChatGenerator, it returned None because that's the default behavior of a MagicMock object when a return value isn't specified. We will update the mock_auto_tokenizer fixture to return a MagicMock object when from_pretrained is called in another PR. For now, we will use this fixture to mock the AutoTokenizer.from_pretrained method. """ with patch("transformers.AutoTokenizer.from_pretrained", autospec=True) as mock_from_pretrained: mock_tokenizer = MagicMock() mock_from_pretrained.return_value = mock_tokenizer yield mock_tokenizer class OpenAIMockStream(Stream[ChatCompletionChunk]): def __init__(self, mock_chunk: ChatCompletionChunk, client=None, *args, **kwargs): client = client or MagicMock() super().__init__(client=client, *args, **kwargs) self.mock_chunk = mock_chunk def __stream__(self) -> Iterator[ChatCompletionChunk]: yield self.mock_chunk class OpenAIAsyncMockStream(AsyncStream[ChatCompletionChunk]): def __init__(self, mock_chunk: ChatCompletionChunk): self.mock_chunk = mock_chunk def __aiter__(self): return self async def __anext__(self): # Only yield once, then stop iteration if not hasattr(self, "_done"): self._done = True return self.mock_chunk raise StopAsyncIteration @pytest.fixture def openai_mock_stream(): """ Fixture that returns a function to create MockStream instances with custom chunks """ return OpenAIMockStream @pytest.fixture def openai_mock_stream_async(): """ Fixture that returns a function to create AsyncMockStream instances with custom chunks """ return OpenAIAsyncMockStream @pytest.fixture def openai_mock_chat_completion(): """ Mock the OpenAI API completion response and reuse it for tests """ with patch("openai.resources.chat.completions.Completions.create") as mock_chat_completion_create: completion = ChatCompletion( id="foo", model="gpt-4", object="chat.completion", choices=[ { "finish_reason": "stop", "logprobs": None, "index": 0, "message": {"content": "Hello world!", "role": "assistant"}, } ], created=int(datetime.now().timestamp()), usage={"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97}, ) mock_chat_completion_create.return_value = completion yield mock_chat_completion_create @pytest.fixture async def openai_mock_async_chat_completion(): """ Mock the OpenAI API completion response and reuse it for async tests """ with patch( "openai.resources.chat.completions.AsyncCompletions.create", new_callable=AsyncMock ) as mock_chat_completion_create: completion = ChatCompletion( id="foo", model="gpt-4", object="chat.completion", choices=[ { "finish_reason": "stop", "logprobs": None, "index": 0, "message": {"content": "Hello world!", "role": "assistant"}, } ], created=int(datetime.now().timestamp()), usage={"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97}, ) mock_chat_completion_create.return_value = completion yield mock_chat_completion_create @pytest.fixture def openai_mock_chat_completion_chunk(): """ Mock the OpenAI API completion chunk response and reuse it for tests """ with patch("openai.resources.chat.completions.Completions.create") as mock_chat_completion_create: completion = ChatCompletionChunk( id="foo", model="gpt-4", object="chat.completion.chunk", choices=[ chat_completion_chunk.Choice( finish_reason="stop", logprobs=None, index=0, delta=chat_completion_chunk.ChoiceDelta(content="Hello", role="assistant"), ) ], created=int(datetime.now().timestamp()), usage=None, ) mock_chat_completion_create.return_value = OpenAIMockStream( completion, cast_to=None, response=None, client=None ) yield mock_chat_completion_create @pytest.fixture async def openai_mock_async_chat_completion_chunk(): """ Mock the OpenAI API completion chunk response and reuse it for async tests """ with patch( "openai.resources.chat.completions.AsyncCompletions.create", new_callable=AsyncMock ) as mock_chat_completion_create: completion = ChatCompletionChunk( id="foo", model="gpt-4", object="chat.completion.chunk", choices=[ chat_completion_chunk.Choice( finish_reason="stop", logprobs=None, index=0, delta=chat_completion_chunk.ChoiceDelta(content="Hello", role="assistant"), ) ], created=int(datetime.now().timestamp()), usage=None, ) mock_chat_completion_create.return_value = OpenAIAsyncMockStream(completion) yield mock_chat_completion_create @pytest.fixture def openai_mock_responses(): """ Mock a fully populated non-streaming Response returned by the OpenAI Responses API (client.responses.create). """ with patch("openai.resources.responses.Responses.create") as mock_create: # Build the Response object exactly like the one you provided mock_response = Response( id="resp_mock_123", created_at=float(datetime.now().timestamp()), metadata={}, model="gpt-5-mini-2025-08-07", object="response", output=[ ResponseReasoningItem( id="rs_mock_1", type="reasoning", summary=[ Summary( text=( "**Providing concise information**\n\n" "The question is simple: the answer is Paris. " "It’s useful to mention that Paris is the capital and a major " "city in France. There’s really no need for extra details in this " "case, so I’ll keep it concise and straightforward." ), type="summary_text", ) ], ), ResponseOutputMessage( id="msg_mock_1", role="assistant", type="message", status="completed", content=[ ResponseOutputText( text="The capital of France is Paris.", type="output_text", logprobs=None, annotations=[] ) ], ), ], parallel_tool_calls=True, temperature=1.0, tool_choice="auto", tools=[], reasoning=Reasoning(effort="low", generate_summary=None, summary="auto"), usage=ResponseUsage( input_tokens=11, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=13, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=24, ), user=None, billing={"payer": "developer"}, prompt_cache_retention=None, store=True, ) mock_create.return_value = mock_response yield mock_create @pytest.fixture def openai_mock_async_responses(): """ Mock a fully populated non-streaming Response returned by the OpenAI Responses API (client.responses.create). """ with patch("openai.resources.responses.AsyncResponses.create") as mock_create: # Build the Response object exactly like the one you provided mock_response = Response( id="resp_mock_123", created_at=float(datetime.now().timestamp()), metadata={}, model="gpt-5-mini-2025-08-07", object="response", output=[ ResponseReasoningItem( id="rs_mock_1", type="reasoning", summary=[ Summary( text=( "**Providing concise information**\n\n" "The question is simple: the answer is Paris. " "It’s useful to mention that Paris is the capital and a major " "city in France. There’s really no need for extra details in this " "case, so I’ll keep it concise and straightforward." ), type="summary_text", ) ], ), ResponseOutputMessage( id="msg_mock_1", role="assistant", type="message", status="completed", content=[ ResponseOutputText( text="The capital of France is Paris.", type="output_text", annotations=[], logprobs=None ) ], ), ], parallel_tool_calls=True, temperature=1.0, tool_choice="auto", tools=[], reasoning=Reasoning(effort="low", generate_summary=None, summary="auto"), usage=ResponseUsage( input_tokens=11, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=13, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=24, ), user=None, billing={"payer": "developer"}, prompt_cache_retention=None, store=True, ) mock_create.return_value = mock_response yield mock_create @pytest.fixture def openai_mock_responses_stream_text_delta(): """ Mock the Responses API streaming text-delta event (sync) and reuse it for tests. """ with patch("openai.resources.responses.Responses.create") as mock_responses_create: event = ResponseTextDeltaEvent( # required fields in the current SDK content_index=0, delta="The capital of France is Paris.", item_id="item_1", logprobs=[], output_index=0, sequence_number=0, type="response.output_text.delta", ) # Your OpenAIMockStream should iterate over this event mock_responses_create.return_value = OpenAIMockStream(event, cast_to=None, response=None, client=None) yield mock_responses_create @pytest.fixture async def openai_mock_async_responses_stream_text_delta(): """ Mock the Responses API streaming text-delta event (async) and reuse it for async tests. """ with patch("openai.resources.responses.AsyncResponses.create", new_callable=AsyncMock) as mock_responses_create: event = ResponseTextDeltaEvent( content_index=0, delta="Hello", item_id="item_1", logprobs=[], output_index=0, sequence_number=0, type="response.output_text.delta", ) mock_responses_create.return_value = OpenAIAsyncMockStream(event) yield mock_responses_create @pytest.fixture def openai_mock_responses_reasoning_summary_delta(): """ Mock a Responses API *streaming* reasoning summary text delta event (sync). """ with patch("openai.resources.responses.Responses.create") as mock_responses_create: start_event = ResponseOutputItemAddedEvent( item=ResponseReasoningItem( id="rs_094e3f8beffcca02006928978067848190b477543eddbf32b3", summary=[], type="reasoning", content=None, encrypted_content=None, status=None, ), output_index=0, sequence_number=2, type="response.output_item.added", ) event = ResponseReasoningSummaryTextDeltaEvent( delta="I need to check the capital of France.", item_id="rs_01e88f7d57f9a2f70069284d2170c48193918c04f85244cf7c", output_index=0, sequence_number=4, summary_index=0, type="response.reasoning_summary_text.delta", obfuscation="cGcv5W5F", ) # Create a custom stream that yields both events sequentially class MultiEventMockStream(OpenAIMockStream): def __init__(self, *events, **kwargs): self.events = events super().__init__(events[0] if events else None, **kwargs) def __stream__(self): for event in self.events: yield event mock_responses_create.return_value = MultiEventMockStream( start_event, event, cast_to=None, response=None, client=None ) yield mock_responses_create