from haystack.reader.farm import FARMReader from haystack.reader.transformers import TransformersReader from haystack.retriever.tfidf import TfidfRetriever from haystack import Finder from haystack.indexing.io import write_documents_to_db, fetch_archive_from_http from haystack.indexing.cleaning import clean_wiki_text from haystack.utils import print_answers ## Indexing & cleaning documents # Init a database (default: sqllite) from haystack.database import db db.create_all() # Let's first get some documents that we want to query # Here: 517 Wikipedia articles for Game of Thrones doc_dir = "data/article_txt_got" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) # Now, let's write the docs to our DB. # You can supply a cleaning function that is applied to each doc (e.g. to remove footers) # It must take a str as input, and return a str. write_documents_to_db(document_dir=doc_dir, clean_func=clean_wiki_text, only_empty_db=True) ## Initalize Reader, Retriever & Finder # A retriever identifies the k most promising chunks of text that might contain the answer for our question # Retrievers use some simple but fast algorithm, here: TF-IDF retriever = TfidfRetriever() # A reader scans the text chunks in detail and extracts the k best answers # Reader use more powerful but slower deep learning models, here: a BERT QA model trained via FARM on Squad 2.0 fetch_archive_from_http(url="https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-models/0.3.0/bert-english-qa-large.tar.gz", output_dir="model") reader = FARMReader(model_dir="model/bert-english-qa-large", use_gpu=False) # OR: use alternatively a reader from huggingface's Transformers package # reader = TransformersReader(use_gpu=-1) # The Finder sticks together retriever and retriever in a pipeline to answer our actual questions finder = Finder(reader, retriever) ## Voilá! Ask a question! # You can configure how many candidates the reader and retriever shall return # The higher top_k_retriever, the better (but also the slower) your answers. prediction = finder.get_answers(question="Who is the father of Arya Stark?", top_k_retriever=10, top_k_reader=5) #prediction = finder.get_answers(question="Who created the Dothraki vocabulary?", top_k_reader=5) #prediction = finder.get_answers(question="Who is the sister of Sansa?", top_k_reader=5) print_answers(prediction, details="minimal")