from haystack import Finder from haystack.database.sql import SQLDocumentStore from haystack.indexing.cleaning import clean_wiki_text from haystack.indexing.io import write_documents_to_db, fetch_archive_from_http from haystack.reader.farm import FARMReader from haystack.reader.transformers import TransformersReader from haystack.retriever.tfidf import TfidfRetriever from haystack.utils import print_answers ## Indexing & cleaning documents # Let's first get some documents that we want to query # Here: 517 Wikipedia articles for Game of Thrones doc_dir = "data/article_txt_got" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) # The documents can be stored in different types of "DocumentStores". # For dev we suggest a light-weight SQL DB # For production we suggest elasticsearch document_store = SQLDocumentStore(url="sqlite:///qa.db") # Now, let's write the docs to our DB. # You can optionally supply a cleaning function that is applied to each doc (e.g. to remove footers) # It must take a str as input, and return a str. write_documents_to_db(document_store=document_store, document_dir=doc_dir, clean_func=clean_wiki_text, only_empty_db=True) ## Initalize Reader, Retriever & Finder # A retriever identifies the k most promising chunks of text that might contain the answer for our question # Retrievers use some simple but fast algorithm, here: TF-IDF retriever = TfidfRetriever(document_store=document_store) # A reader scans the text chunks in detail and extracts the k best answers # Reader use more powerful but slower deep learning models # You can select a local model or any of the QA models published on huggingface's model hub (https://huggingface.co/models) # here: a medium sized BERT QA model trained via FARM on Squad 2.0 # You can adjust the model to return "no answer possible" with the no_ans_boost. Higher values mean the model prefers "no answer possible" reader = FARMReader(model_name_or_path="deepset/bert-base-cased-squad2", use_gpu=False) # OR: use alternatively a reader from huggingface's transformers package (https://github.com/huggingface/transformers) # reader = TransformersReader(model="distilbert-base-uncased-distilled-squad", tokenizer="distilbert-base-uncased", use_gpu=-1) # The Finder sticks together retriever and retriever in a pipeline to answer our actual questions finder = Finder(reader, retriever) ## Voilá! Ask a question! # You can configure how many candidates the reader and retriever shall return # The higher top_k_retriever, the better (but also the slower) your answers. prediction = finder.get_answers(question="Who is the father of Arya Stark?", top_k_retriever=10, top_k_reader=5) # to test impossible questions we need a large QA model, e.g. deepset/bert-large-uncased-whole-word-masking-squad2 # and we need to enable returning "no answer possible" by setting no_ans_boost=X in FARMReader # prediction = finder.get_answers(question="Who is the first daughter of Arya Stark?", top_k_retriever=10, top_k_reader=5) #prediction = finder.get_answers(question="Who created the Dothraki vocabulary?", top_k_reader=5) #prediction = finder.get_answers(question="Who is the sister of Sansa?", top_k_reader=5) print_answers(prediction, details="minimal")