import sys from pathlib import Path from unittest.mock import patch, MagicMock import pytest import torch from haystack.dataclasses import Document from haystack.components.audio import LocalWhisperTranscriber SAMPLES_PATH = Path(__file__).parent.parent.parent / "test_files" class TestLocalWhisperTranscriber: @pytest.mark.unit def test_init(self): transcriber = LocalWhisperTranscriber( model_name_or_path="large-v2" ) # Doesn't matter if it's huge, the model is not loaded in init. assert transcriber.model_name == "large-v2" assert transcriber.device == torch.device("cpu") assert transcriber._model is None @pytest.mark.unit def test_init_wrong_model(self): with pytest.raises(ValueError, match="Model name 'whisper-1' not recognized"): LocalWhisperTranscriber(model_name_or_path="whisper-1") @pytest.mark.unit def test_to_dict(self): transcriber = LocalWhisperTranscriber() data = transcriber.to_dict() assert data == { "type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber", "init_parameters": {"model_name_or_path": "large", "device": "cpu", "whisper_params": {}}, } @pytest.mark.unit def test_to_dict_with_custom_init_parameters(self): transcriber = LocalWhisperTranscriber( model_name_or_path="tiny", device="cuda", whisper_params={"return_segments": True, "temperature": [0.1, 0.6, 0.8]}, ) data = transcriber.to_dict() assert data == { "type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber", "init_parameters": { "model_name_or_path": "tiny", "device": "cuda", "whisper_params": {"return_segments": True, "temperature": [0.1, 0.6, 0.8]}, }, } @pytest.mark.unit def test_warmup(self): with patch("haystack.components.audio.whisper_local.whisper") as mocked_whisper: transcriber = LocalWhisperTranscriber(model_name_or_path="large-v2") mocked_whisper.load_model.assert_not_called() transcriber.warm_up() mocked_whisper.load_model.assert_called_once_with("large-v2", device=torch.device(type="cpu")) @pytest.mark.unit def test_warmup_doesnt_reload(self): with patch("haystack.components.audio.whisper_local.whisper") as mocked_whisper: transcriber = LocalWhisperTranscriber(model_name_or_path="large-v2") transcriber.warm_up() transcriber.warm_up() mocked_whisper.load_model.assert_called_once() @pytest.mark.unit def test_run_with_path(self): comp = LocalWhisperTranscriber(model_name_or_path="large-v2") comp._model = MagicMock() comp._model.transcribe.return_value = { "text": "test transcription", "other_metadata": ["other", "meta", "data"], } results = comp.run(audio_files=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"]) expected = Document( content="test transcription", meta={ "audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav", "other_metadata": ["other", "meta", "data"], }, ) assert results["documents"] == [expected] @pytest.mark.unit def test_run_with_str(self): comp = LocalWhisperTranscriber(model_name_or_path="large-v2") comp._model = MagicMock() comp._model.transcribe.return_value = { "text": "test transcription", "other_metadata": ["other", "meta", "data"], } results = comp.run( audio_files=[str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute())] ) expected = Document( content="test transcription", meta={ "audio_file": str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute()), "other_metadata": ["other", "meta", "data"], }, ) assert results["documents"] == [expected] @pytest.mark.unit def test_transcribe(self): comp = LocalWhisperTranscriber(model_name_or_path="large-v2") comp._model = MagicMock() comp._model.transcribe.return_value = { "text": "test transcription", "other_metadata": ["other", "meta", "data"], } results = comp.transcribe(audio_files=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"]) expected = Document( content="test transcription", meta={ "audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav", "other_metadata": ["other", "meta", "data"], }, ) assert results == [expected] @pytest.mark.unit def test_transcribe_stream(self): comp = LocalWhisperTranscriber(model_name_or_path="large-v2") comp._model = MagicMock() comp._model.transcribe.return_value = { "text": "test transcription", "other_metadata": ["other", "meta", "data"], } results = comp.transcribe( audio_files=[open(SAMPLES_PATH / "audio" / "this is the content of the document.wav", "rb")] ) expected = Document( content="test transcription", meta={"audio_file": "<>", "other_metadata": ["other", "meta", "data"]}, ) assert results == [expected] @pytest.mark.integration @pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="ffmpeg not installed on Windows CI") def test_whisper_local_transcriber(self, test_files_path): comp = LocalWhisperTranscriber(model_name_or_path="medium", whisper_params={"language": "english"}) comp.warm_up() output = comp.run( audio_files=[ test_files_path / "audio" / "this is the content of the document.wav", str((test_files_path / "audio" / "the context for this answer is here.wav").absolute()), open(test_files_path / "audio" / "answer.wav", "rb"), ] ) docs = output["documents"] assert len(docs) == 3 assert docs[0].content.strip().lower() == "this is the content of the document." assert test_files_path / "audio" / "this is the content of the document.wav" == docs[0].meta["audio_file"] assert docs[1].content.strip().lower() == "the context for this answer is here." assert ( str((test_files_path / "audio" / "the context for this answer is here.wav").absolute()) == docs[1].meta["audio_file"] ) assert docs[2].content.strip().lower() == "answer." assert docs[2].meta["audio_file"] == "<>"