# Long-Form Question Answering [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deepset-ai/haystack/blob/master/tutorials/Tutorial12_LFQA.ipynb) ### Prepare environment #### Colab: Enable the GPU runtime Make sure you enable the GPU runtime to experience decent speed in this tutorial. **Runtime -> Change Runtime type -> Hardware accelerator -> GPU** ```python # Make sure you have a GPU running !nvidia-smi ``` ```python # Install the latest master of Haystack !pip install git+https://github.com/deepset-ai/haystack.git # If you run this notebook on Google Colab, you might need to # restart the runtime after installing haystack. ``` ```python from haystack.utils import convert_files_to_dicts, fetch_archive_from_http, clean_wiki_text from haystack.nodes import Seq2SeqGenerator ``` ### Document Store FAISS is a library for efficient similarity search on a cluster of dense vectors. The `FAISSDocumentStore` uses a SQL(SQLite in-memory be default) database under-the-hood to store the document text and other meta data. The vector embeddings of the text are indexed on a FAISS Index that later is queried for searching answers. The default flavour of FAISSDocumentStore is "Flat" but can also be set to "HNSW" for faster search at the expense of some accuracy. Just set the faiss_index_factor_str argument in the constructor. For more info on which suits your use case: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index ```python from haystack.document_stores import FAISSDocumentStore document_store = FAISSDocumentStore(vector_dim=128, faiss_index_factory_str="Flat") ``` ### Cleaning & indexing documents Similarly to the previous tutorials, we download, convert and index some Game of Thrones articles to our DocumentStore ```python # Let's first get some files that we want to use doc_dir = "data/article_txt_got" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) # Convert files to dicts dicts = convert_files_to_dicts(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True) # Now, let's write the dicts containing documents to our DB. document_store.write_documents(dicts) ``` ### Initialize Retriever and Reader/Generator #### Retriever **Here:** We use a `RetribertRetriever` and we invoke `update_embeddings` to index the embeddings of documents in the `FAISSDocumentStore` ```python from haystack.nodes import EmbeddingRetriever retriever = EmbeddingRetriever(document_store=document_store, embedding_model="yjernite/retribert-base-uncased", model_format="retribert") document_store.update_embeddings(retriever) ``` Before we blindly use the `RetribertRetriever` let's empirically test it to make sure a simple search indeed finds the relevant documents. ```python from haystack.utils import print_documents from haystack.pipelines import DocumentSearchPipeline p_retrieval = DocumentSearchPipeline(retriever) res = p_retrieval.run( query="Tell me something about Arya Stark?", params={"Retriever": {"top_k": 10}} ) print_documents(res, max_text_len=512) ``` #### Reader/Generator Similar to previous Tutorials we now initalize our reader/generator. Here we use a `Seq2SeqGenerator` with the *yjernite/bart_eli5* model (see: https://huggingface.co/yjernite/bart_eli5) ```python generator = Seq2SeqGenerator(model_name_or_path="yjernite/bart_eli5") ``` ### Pipeline With a Haystack `Pipeline` you can stick together your building blocks to a search pipeline. Under the hood, `Pipelines` are Directed Acyclic Graphs (DAGs) that you can easily customize for your own use cases. To speed things up, Haystack also comes with a few predefined Pipelines. One of them is the `GenerativeQAPipeline` that combines a retriever and a reader/generator to answer our questions. You can learn more about `Pipelines` in the [docs](https://haystack.deepset.ai/docs/latest/pipelinesmd). ```python from haystack.pipelines import GenerativeQAPipeline pipe = GenerativeQAPipeline(generator, retriever) ``` ## VoilĂ ! Ask a question! ```python pipe.run( query="Why did Arya Stark's character get portrayed in a television adaptation?", params={"Retriever": {"top_k": 1}} ) ``` ```python pipe.run(query="What kind of character does Arya Stark play?", params={"Retriever": {"top_k": 1}}) ``` ## About us This [Haystack](https://github.com/deepset-ai/haystack/) notebook was made with love by [deepset](https://deepset.ai/) in Berlin, Germany We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems. Some of our other work: - [German BERT](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR](https://deepset.ai/germanquad) - [FARM](https://github.com/deepset-ai/FARM) Get in touch: [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](https://www.deepset.ai/jobs)