import numpy as np import pytest from haystack.schema import Document from conftest import get_document_store import uuid embedding_dim = 768 def get_uuid(): return str(uuid.uuid4()) DOCUMENTS = [ {"content": "text1", "id":"not a correct uuid", "key": "a"}, {"content": "text2", "id":get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)}, {"content": "text3", "id":get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)}, {"content": "text4", "id":get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)}, {"content": "text5", "id":get_uuid(), "key": "b", "embedding": np.random.rand(embedding_dim).astype(np.float32)}, ] DOCUMENTS_XS = [ # current "dict" format for a document {"content": "My name is Carla and I live in Berlin", "id":get_uuid(), "meta": {"metafield": "test1", "name": "filename1"}, "embedding": np.random.rand(embedding_dim).astype(np.float32)}, # meta_field at the top level for backward compatibility {"content": "My name is Paul and I live in New York", "id":get_uuid(), "metafield": "test2", "name": "filename2", "embedding": np.random.rand(embedding_dim).astype(np.float32)}, # Document object for a doc Document(content="My name is Christelle and I live in Paris", id=get_uuid(), meta={"metafield": "test3", "name": "filename3"}, embedding=np.random.rand(embedding_dim).astype(np.float32)) ] @pytest.fixture(params=["weaviate"]) def document_store_with_docs(request, tmp_path): document_store = get_document_store(request.param, tmp_path=tmp_path) document_store.write_documents(DOCUMENTS_XS) yield document_store document_store.delete_documents() @pytest.fixture(params=["weaviate"]) def document_store(request, tmp_path): document_store = get_document_store(request.param, tmp_path=tmp_path) yield document_store document_store.delete_documents() @pytest.mark.weaviate @pytest.mark.parametrize("document_store", ["weaviate"], indirect=True) @pytest.mark.parametrize("batch_size", [2]) def test_weaviate_write_docs(document_store, batch_size): # Write in small batches for i in range(0, len(DOCUMENTS), batch_size): document_store.write_documents(DOCUMENTS[i: i + batch_size]) documents_indexed = document_store.get_all_documents() assert len(documents_indexed) == len(DOCUMENTS) documents_indexed = document_store.get_all_documents(batch_size=batch_size) assert len(documents_indexed) == len(DOCUMENTS) @pytest.mark.weaviate @pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True) def test_query_by_embedding(document_store_with_docs): docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32)) assert len(docs) == 3 docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), top_k=1) assert len(docs) == 1 docs = document_store_with_docs.query_by_embedding(np.random.rand(embedding_dim).astype(np.float32), filters = {"name": ['filename2']}) assert len(docs) == 1 @pytest.mark.weaviate @pytest.mark.parametrize("document_store_with_docs", ["weaviate"], indirect=True) def test_query(document_store_with_docs): query_text = 'My name is Carla and I live in Berlin' with pytest.raises(Exception): docs = document_store_with_docs.query(query_text) docs = document_store_with_docs.query(filters = {"name": ['filename2']}) assert len(docs) == 1 docs = document_store_with_docs.query(filters={"content":[query_text.lower()]}) assert len(docs) == 1 docs = document_store_with_docs.query(filters={"content":['live']}) assert len(docs) == 3