import os import faiss import numpy as np import pytest from haystack import Document from haystack import Finder from haystack.document_store.faiss import FAISSDocumentStore from haystack.pipeline import Pipeline from haystack.retriever.dense import EmbeddingRetriever DOCUMENTS = [ {"name": "name_1", "text": "text_1", "embedding": np.random.rand(768).astype(np.float32)}, {"name": "name_2", "text": "text_2", "embedding": np.random.rand(768).astype(np.float32)}, {"name": "name_3", "text": "text_3", "embedding": np.random.rand(768).astype(np.float64)}, {"name": "name_4", "text": "text_4", "embedding": np.random.rand(768).astype(np.float32)}, {"name": "name_5", "text": "text_5", "embedding": np.random.rand(768).astype(np.float32)}, {"name": "name_6", "text": "text_6", "embedding": np.random.rand(768).astype(np.float64)}, ] @pytest.mark.parametrize("document_store", ["faiss"], indirect=True) def test_faiss_index_save_and_load(document_store): document_store.write_documents(DOCUMENTS) # test saving the index document_store.save("haystack_test_faiss") # clear existing faiss_index document_store.faiss_indexes[document_store.index].reset() # test faiss index is cleared assert document_store.faiss_indexes[document_store.index].ntotal == 0 # test loading the index new_document_store = FAISSDocumentStore.load( sql_url="sqlite://", faiss_file_path="haystack_test_faiss", index=document_store.index ) # check faiss index is restored assert new_document_store.faiss_indexes[document_store.index].ntotal == len(DOCUMENTS) @pytest.mark.parametrize("document_store", ["faiss"], indirect=True) @pytest.mark.parametrize("index_buffer_size", [10_000, 2]) @pytest.mark.parametrize("batch_size", [2]) def test_faiss_write_docs(document_store, index_buffer_size, batch_size): document_store.index_buffer_size = index_buffer_size # Write in small batches for i in range(0, len(DOCUMENTS), batch_size): document_store.write_documents(DOCUMENTS[i: i + batch_size]) documents_indexed = document_store.get_all_documents() assert len(documents_indexed) == len(DOCUMENTS) # test if correct vectors are associated with docs for i, doc in enumerate(documents_indexed): # we currently don't get the embeddings back when we call document_store.get_all_documents() original_doc = [d for d in DOCUMENTS if d["text"] == doc.text][0] stored_emb = document_store.faiss_indexes[document_store.index].reconstruct(int(doc.meta["vector_id"])) # compare original input vec with stored one (ignore extra dim added by hnsw) assert np.allclose(original_doc["embedding"], stored_emb, rtol=0.01) @pytest.mark.slow @pytest.mark.parametrize("retriever", ["dpr"], indirect=True) @pytest.mark.parametrize("document_store", ["faiss", "milvus"], indirect=True) @pytest.mark.parametrize("batch_size", [4, 6]) def test_update_docs(document_store, retriever, batch_size): # initial write document_store.write_documents(DOCUMENTS) document_store.update_embeddings(retriever=retriever, batch_size=batch_size) documents_indexed = document_store.get_all_documents() assert len(documents_indexed) == len(DOCUMENTS) # test if correct vectors are associated with docs for doc in documents_indexed: original_doc = [d for d in DOCUMENTS if d["text"] == doc.text][0] updated_embedding = retriever.embed_passages([Document.from_dict(original_doc)]) stored_doc = document_store.get_all_documents(filters={"name": [doc.meta["name"]]})[0] # compare original input vec with stored one (ignore extra dim added by hnsw) assert np.allclose(updated_embedding, stored_doc.embedding, rtol=0.01) @pytest.mark.slow @pytest.mark.parametrize("retriever", ["dpr"], indirect=True) @pytest.mark.parametrize("document_store", ["milvus", "faiss"], indirect=True) def test_update_exiting_docs(document_store, retriever): document_store.update_existing_documents = True old_document = Document(text="text_1") # initial write document_store.write_documents([old_document]) document_store.update_embeddings(retriever=retriever) old_documents_indexed = document_store.get_all_documents() assert len(old_documents_indexed) == 1 # Update document data new_document = Document(text="text_2") new_document.id = old_document.id document_store.write_documents([new_document]) document_store.update_embeddings(retriever=retriever) new_documents_indexed = document_store.get_all_documents() assert len(new_documents_indexed) == 1 assert old_documents_indexed[0].id == new_documents_indexed[0].id assert old_documents_indexed[0].text == "text_1" assert new_documents_indexed[0].text == "text_2" assert not np.allclose(old_documents_indexed[0].embedding, new_documents_indexed[0].embedding, rtol=0.01) @pytest.mark.parametrize("retriever", ["dpr"], indirect=True) @pytest.mark.parametrize("document_store", ["faiss", "milvus"], indirect=True) def test_update_with_empty_store(document_store, retriever): # Call update with empty doc store document_store.update_embeddings(retriever=retriever) # initial write document_store.write_documents(DOCUMENTS) documents_indexed = document_store.get_all_documents() assert len(documents_indexed) == len(DOCUMENTS) @pytest.mark.parametrize("index_factory", ["Flat", "HNSW", "IVF1,Flat"]) def test_faiss_retrieving(index_factory): document_store = FAISSDocumentStore( sql_url="sqlite:///test_faiss_retrieving.db", faiss_index_factory_str=index_factory ) document_store.delete_all_documents(index="document") if "ivf" in index_factory.lower(): document_store.train_index(DOCUMENTS) document_store.write_documents(DOCUMENTS) retriever = EmbeddingRetriever( document_store=document_store, embedding_model="deepset/sentence_bert", use_gpu=False ) result = retriever.retrieve(query="How to test this?") assert len(result) == len(DOCUMENTS) assert type(result[0]) == Document # Cleanup document_store.faiss_indexes[document_store.index].reset() if os.path.exists("test_faiss_retrieving.db"): os.remove("test_faiss_retrieving.db") @pytest.mark.parametrize("retriever", ["embedding"], indirect=True) @pytest.mark.parametrize("document_store", ["faiss", "milvus"], indirect=True) def test_finding(document_store, retriever): document_store.write_documents(DOCUMENTS) finder = Finder(reader=None, retriever=retriever) prediction = finder.get_answers_via_similar_questions(question="How to test this?", top_k_retriever=1) assert len(prediction.get('answers', [])) == 1 @pytest.mark.parametrize("retriever", ["embedding"], indirect=True) @pytest.mark.parametrize("document_store", ["faiss", "milvus"], indirect=True) def test_pipeline(document_store, retriever): documents = [ {"name": "name_1", "text": "text_1", "embedding": np.random.rand(768).astype(np.float32)}, {"name": "name_2", "text": "text_2", "embedding": np.random.rand(768).astype(np.float32)}, {"name": "name_3", "text": "text_3", "embedding": np.random.rand(768).astype(np.float64)}, {"name": "name_4", "text": "text_4", "embedding": np.random.rand(768).astype(np.float32)}, ] document_store.write_documents(documents) pipeline = Pipeline() pipeline.add_node(component=retriever, name="FAISS", inputs=["Query"]) output = pipeline.run(query="How to test this?", top_k_retriever=3) assert len(output["documents"]) == 3 def test_faiss_passing_index_from_outside(): d = 768 nlist = 2 quantizer = faiss.IndexFlatIP(d) index = "haystack_test_1" faiss_index = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_INNER_PRODUCT) faiss_index.set_direct_map_type(faiss.DirectMap.Hashtable) faiss_index.nprobe = 2 document_store = FAISSDocumentStore(sql_url="sqlite:///haystack_test_faiss.db", faiss_index=faiss_index, index=index) document_store.delete_all_documents() # as it is a IVF index we need to train it before adding docs document_store.train_index(DOCUMENTS) document_store.write_documents(documents=DOCUMENTS) documents_indexed = document_store.get_all_documents() # test if vectors ids are associated with docs for doc in documents_indexed: assert 0 <= int(doc.meta["vector_id"]) <= 7