import pandas as pd import pytest from haystack.schema import Document from haystack.pipelines.base import Pipeline def test_table_reader(table_reader): data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].answer == "11 november 1974" assert prediction["answers"][0].offsets_in_context[0].start == 7 assert prediction["answers"][0].offsets_in_context[0].end == 8 def test_table_reader_in_pipeline(table_reader): pipeline = Pipeline() pipeline.add_node(table_reader, "TableReader", ["Query"]) data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = pipeline.run(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].answer == "11 november 1974" assert prediction["answers"][0].offsets_in_context[0].start == 7 assert prediction["answers"][0].offsets_in_context[0].end == 8 @pytest.mark.parametrize("table_reader", ["tapas"], indirect=True) def test_table_reader_aggregation(table_reader): data = { "Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"], "Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"], } table = pd.DataFrame(data) query = "How tall are all mountains on average?" prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].answer == "8609.2 m" assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE" assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"] query = "How tall are all mountains together?" prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].answer == "43046.0 m" assert prediction["answers"][0].meta["aggregation_operator"] == "SUM" assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]