from typing import Dict, Any import pytest from haystack.preview import Pipeline, DeserializationError from haystack.preview.testing.factory import document_store_class from haystack.preview.components.retrievers.memory_embedding_retriever import MemoryEmbeddingRetriever from haystack.preview.dataclasses import Document from haystack.preview.document_stores import MemoryDocumentStore class TestMemoryEmbeddingRetriever: @pytest.mark.unit def test_init_default(self): retriever = MemoryEmbeddingRetriever(MemoryDocumentStore()) assert retriever.filters is None assert retriever.top_k == 10 assert retriever.scale_score @pytest.mark.unit def test_init_with_parameters(self): retriever = MemoryEmbeddingRetriever( MemoryDocumentStore(), filters={"name": "test.txt"}, top_k=5, scale_score=False ) assert retriever.filters == {"name": "test.txt"} assert retriever.top_k == 5 assert not retriever.scale_score @pytest.mark.unit def test_init_with_invalid_top_k_parameter(self): with pytest.raises(ValueError, match="top_k must be > 0, but got -2"): MemoryEmbeddingRetriever(MemoryDocumentStore(), top_k=-2, scale_score=False) @pytest.mark.unit def test_to_dict(self): MyFakeStore = document_store_class("MyFakeStore", bases=(MemoryDocumentStore,)) document_store = MyFakeStore() document_store.to_dict = lambda: {"type": "MyFakeStore", "init_parameters": {}} component = MemoryEmbeddingRetriever(document_store=document_store) data = component.to_dict() assert data == { "type": "MemoryEmbeddingRetriever", "init_parameters": { "document_store": {"type": "MyFakeStore", "init_parameters": {}}, "filters": None, "top_k": 10, "scale_score": True, "return_embedding": False, }, } @pytest.mark.unit def test_to_dict_with_custom_init_parameters(self): MyFakeStore = document_store_class("MyFakeStore", bases=(MemoryDocumentStore,)) document_store = MyFakeStore() document_store.to_dict = lambda: {"type": "MyFakeStore", "init_parameters": {}} component = MemoryEmbeddingRetriever( document_store=document_store, filters={"name": "test.txt"}, top_k=5, scale_score=False, return_embedding=True, ) data = component.to_dict() assert data == { "type": "MemoryEmbeddingRetriever", "init_parameters": { "document_store": {"type": "MyFakeStore", "init_parameters": {}}, "filters": {"name": "test.txt"}, "top_k": 5, "scale_score": False, "return_embedding": True, }, } @pytest.mark.unit def test_from_dict(self): document_store_class("MyFakeStore", bases=(MemoryDocumentStore,)) data = { "type": "MemoryEmbeddingRetriever", "init_parameters": { "document_store": {"type": "MyFakeStore", "init_parameters": {}}, "filters": {"name": "test.txt"}, "top_k": 5, }, } component = MemoryEmbeddingRetriever.from_dict(data) assert isinstance(component.document_store, MemoryDocumentStore) assert component.filters == {"name": "test.txt"} assert component.top_k == 5 assert component.scale_score @pytest.mark.unit def test_from_dict_without_docstore(self): data = {"type": "MemoryEmbeddingRetriever", "init_parameters": {}} with pytest.raises(DeserializationError, match="Missing 'document_store' in serialization data"): MemoryEmbeddingRetriever.from_dict(data) @pytest.mark.unit def test_from_dict_without_docstore_type(self): data = {"type": "MemoryEmbeddingRetriever", "init_parameters": {"document_store": {"init_parameters": {}}}} with pytest.raises(DeserializationError, match="Missing 'type' in document store's serialization data"): MemoryEmbeddingRetriever.from_dict(data) @pytest.mark.unit def test_from_dict_nonexisting_docstore(self): data = { "type": "MemoryEmbeddingRetriever", "init_parameters": {"document_store": {"type": "NonexistingDocstore", "init_parameters": {}}}, } with pytest.raises(DeserializationError, match="DocumentStore type 'NonexistingDocstore' not found"): MemoryEmbeddingRetriever.from_dict(data) @pytest.mark.unit def test_valid_run(self): top_k = 3 ds = MemoryDocumentStore(embedding_similarity_function="cosine") docs = [ Document(text="my document", embedding=[0.1, 0.2, 0.3, 0.4]), Document(text="another document", embedding=[1.0, 1.0, 1.0, 1.0]), Document(text="third document", embedding=[0.5, 0.7, 0.5, 0.7]), ] ds.write_documents(docs) retriever = MemoryEmbeddingRetriever(ds, top_k=top_k) result = retriever.run(query_embedding=[0.1, 0.1, 0.1, 0.1], return_embedding=True) assert "documents" in result assert len(result["documents"]) == top_k assert result["documents"][0].embedding == [1.0, 1.0, 1.0, 1.0] @pytest.mark.unit def test_invalid_run_wrong_store_type(self): SomeOtherDocumentStore = document_store_class("SomeOtherDocumentStore") with pytest.raises(ValueError, match="document_store must be an instance of MemoryDocumentStore"): MemoryEmbeddingRetriever(SomeOtherDocumentStore()) @pytest.mark.integration def test_run_with_pipeline(self): ds = MemoryDocumentStore(embedding_similarity_function="cosine") top_k = 2 docs = [ Document(text="my document", embedding=[0.1, 0.2, 0.3, 0.4]), Document(text="another document", embedding=[1.0, 1.0, 1.0, 1.0]), Document(text="third document", embedding=[0.5, 0.7, 0.5, 0.7]), ] ds.write_documents(docs) retriever = MemoryEmbeddingRetriever(ds, top_k=top_k) pipeline = Pipeline() pipeline.add_component("retriever", retriever) result: Dict[str, Any] = pipeline.run( data={"retriever": {"query_embedding": [0.1, 0.1, 0.1, 0.1], "return_embedding": True}} ) assert result assert "retriever" in result results_docs = result["retriever"]["documents"] assert results_docs assert len(results_docs) == top_k assert results_docs[0].embedding == [1.0, 1.0, 1.0, 1.0]