from unittest.mock import MagicMock, patch import numpy as np import pytest from huggingface_hub.utils import RepositoryNotFoundError from haystack.utils.auth import Secret from haystack.components.embedders.hugging_face_tei_document_embedder import HuggingFaceTEIDocumentEmbedder from haystack.dataclasses import Document @pytest.fixture def mock_check_valid_model(): with patch( "haystack.components.embedders.hugging_face_tei_document_embedder.check_valid_model", MagicMock(return_value=None), ) as mock: yield mock def mock_embedding_generation(text, **kwargs): response = np.array([np.random.rand(384) for i in range(len(text))]) return response class TestHuggingFaceTEIDocumentEmbedder: def test_init_default(self, monkeypatch, mock_check_valid_model): monkeypatch.setenv("HF_API_TOKEN", "fake-api-token") embedder = HuggingFaceTEIDocumentEmbedder() assert embedder.model == "BAAI/bge-small-en-v1.5" assert embedder.url is None assert embedder.token == Secret.from_env_var("HF_API_TOKEN", strict=False) assert embedder.prefix == "" assert embedder.suffix == "" assert embedder.batch_size == 32 assert embedder.progress_bar is True assert embedder.meta_fields_to_embed == [] assert embedder.embedding_separator == "\n" def test_init_with_parameters(self, mock_check_valid_model): embedder = HuggingFaceTEIDocumentEmbedder( model="sentence-transformers/all-mpnet-base-v2", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), prefix="prefix", suffix="suffix", batch_size=64, progress_bar=False, meta_fields_to_embed=["test_field"], embedding_separator=" | ", ) assert embedder.model == "sentence-transformers/all-mpnet-base-v2" assert embedder.url == "https://some_embedding_model.com" assert embedder.token == Secret.from_token("fake-api-token") assert embedder.prefix == "prefix" assert embedder.suffix == "suffix" assert embedder.batch_size == 64 assert embedder.progress_bar is False assert embedder.meta_fields_to_embed == ["test_field"] assert embedder.embedding_separator == " | " def test_initialize_with_invalid_url(self, mock_check_valid_model): with pytest.raises(ValueError): HuggingFaceTEIDocumentEmbedder(model="sentence-transformers/all-mpnet-base-v2", url="invalid_url") def test_initialize_with_url_but_invalid_model(self, mock_check_valid_model): # When custom TEI endpoint is used via URL, model must be provided and valid HuggingFace Hub model id mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id") with pytest.raises(RepositoryNotFoundError): HuggingFaceTEIDocumentEmbedder(model="invalid_model_id", url="https://some_embedding_model.com") def test_to_dict(self, mock_check_valid_model): component = HuggingFaceTEIDocumentEmbedder() data = component.to_dict() assert data == { "type": "haystack.components.embedders.hugging_face_tei_document_embedder.HuggingFaceTEIDocumentEmbedder", "init_parameters": { "model": "BAAI/bge-small-en-v1.5", "token": {"env_vars": ["HF_API_TOKEN"], "strict": False, "type": "env_var"}, "url": None, "prefix": "", "suffix": "", "batch_size": 32, "progress_bar": True, "meta_fields_to_embed": [], "embedding_separator": "\n", }, } def test_to_dict_with_custom_init_parameters(self, mock_check_valid_model): component = HuggingFaceTEIDocumentEmbedder( model="sentence-transformers/all-mpnet-base-v2", url="https://some_embedding_model.com", token=Secret.from_env_var("ENV_VAR", strict=False), prefix="prefix", suffix="suffix", batch_size=64, progress_bar=False, meta_fields_to_embed=["test_field"], embedding_separator=" | ", ) data = component.to_dict() assert data == { "type": "haystack.components.embedders.hugging_face_tei_document_embedder.HuggingFaceTEIDocumentEmbedder", "init_parameters": { "token": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"}, "model": "sentence-transformers/all-mpnet-base-v2", "url": "https://some_embedding_model.com", "prefix": "prefix", "suffix": "suffix", "batch_size": 64, "progress_bar": False, "meta_fields_to_embed": ["test_field"], "embedding_separator": " | ", }, } def test_prepare_texts_to_embed_w_metadata(self, mock_check_valid_model): documents = [ Document(content=f"document number {i}: content", meta={"meta_field": f"meta_value {i}"}) for i in range(5) ] embedder = HuggingFaceTEIDocumentEmbedder( model="sentence-transformers/all-mpnet-base-v2", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), meta_fields_to_embed=["meta_field"], embedding_separator=" | ", ) prepared_texts = embedder._prepare_texts_to_embed(documents) assert prepared_texts == [ "meta_value 0 | document number 0: content", "meta_value 1 | document number 1: content", "meta_value 2 | document number 2: content", "meta_value 3 | document number 3: content", "meta_value 4 | document number 4: content", ] def test_prepare_texts_to_embed_w_suffix(self, mock_check_valid_model): documents = [Document(content=f"document number {i}") for i in range(5)] embedder = HuggingFaceTEIDocumentEmbedder( model="sentence-transformers/all-mpnet-base-v2", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), prefix="my_prefix ", suffix=" my_suffix", ) prepared_texts = embedder._prepare_texts_to_embed(documents) assert prepared_texts == [ "my_prefix document number 0 my_suffix", "my_prefix document number 1 my_suffix", "my_prefix document number 2 my_suffix", "my_prefix document number 3 my_suffix", "my_prefix document number 4 my_suffix", ] def test_embed_batch(self, mock_check_valid_model): texts = ["text 1", "text 2", "text 3", "text 4", "text 5"] with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch: mock_embedding_patch.side_effect = mock_embedding_generation embedder = HuggingFaceTEIDocumentEmbedder( model="BAAI/bge-small-en-v1.5", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), ) embeddings = embedder._embed_batch(texts_to_embed=texts, batch_size=2) assert mock_embedding_patch.call_count == 3 assert isinstance(embeddings, list) assert len(embeddings) == len(texts) for embedding in embeddings: assert isinstance(embedding, list) assert len(embedding) == 384 assert all(isinstance(x, float) for x in embedding) def test_run(self, mock_check_valid_model): docs = [ Document(content="I love cheese", meta={"topic": "Cuisine"}), Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}), ] with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch: mock_embedding_patch.side_effect = mock_embedding_generation embedder = HuggingFaceTEIDocumentEmbedder( model="BAAI/bge-small-en-v1.5", token=Secret.from_token("fake-api-token"), prefix="prefix ", suffix=" suffix", meta_fields_to_embed=["topic"], embedding_separator=" | ", ) result = embedder.run(documents=docs) mock_embedding_patch.assert_called_once_with( text=[ "prefix Cuisine | I love cheese suffix", "prefix ML | A transformer is a deep learning architecture suffix", ] ) documents_with_embeddings = result["documents"] assert isinstance(documents_with_embeddings, list) assert len(documents_with_embeddings) == len(docs) for doc in documents_with_embeddings: assert isinstance(doc, Document) assert isinstance(doc.embedding, list) assert len(doc.embedding) == 384 assert all(isinstance(x, float) for x in doc.embedding) def test_run_custom_batch_size(self, mock_check_valid_model): docs = [ Document(content="I love cheese", meta={"topic": "Cuisine"}), Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}), ] with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch: mock_embedding_patch.side_effect = mock_embedding_generation embedder = HuggingFaceTEIDocumentEmbedder( model="BAAI/bge-small-en-v1.5", token=Secret.from_token("fake-api-token"), prefix="prefix ", suffix=" suffix", meta_fields_to_embed=["topic"], embedding_separator=" | ", batch_size=1, ) result = embedder.run(documents=docs) assert mock_embedding_patch.call_count == 2 documents_with_embeddings = result["documents"] assert isinstance(documents_with_embeddings, list) assert len(documents_with_embeddings) == len(docs) for doc in documents_with_embeddings: assert isinstance(doc, Document) assert isinstance(doc.embedding, list) assert len(doc.embedding) == 384 assert all(isinstance(x, float) for x in doc.embedding) def test_run_wrong_input_format(self, mock_check_valid_model): embedder = HuggingFaceTEIDocumentEmbedder( model="BAAI/bge-small-en-v1.5", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), ) # wrong formats string_input = "text" list_integers_input = [1, 2, 3] with pytest.raises(TypeError, match="HuggingFaceTEIDocumentEmbedder expects a list of Documents as input"): embedder.run(documents=string_input) with pytest.raises(TypeError, match="HuggingFaceTEIDocumentEmbedder expects a list of Documents as input"): embedder.run(documents=list_integers_input) def test_run_on_empty_list(self, mock_check_valid_model): embedder = HuggingFaceTEIDocumentEmbedder( model="BAAI/bge-small-en-v1.5", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), ) empty_list_input = [] result = embedder.run(documents=empty_list_input) assert result["documents"] is not None assert not result["documents"] # empty list