from unittest.mock import MagicMock, patch import numpy as np import pytest from huggingface_hub.utils import RepositoryNotFoundError from haystack.utils.auth import Secret from haystack.components.embedders.hugging_face_tei_text_embedder import HuggingFaceTEITextEmbedder @pytest.fixture def mock_check_valid_model(): with patch( "haystack.components.embedders.hugging_face_tei_text_embedder.check_valid_model", MagicMock(return_value=None) ) as mock: yield mock def mock_embedding_generation(text, **kwargs): response = np.random.rand(384) return response class TestHuggingFaceTEITextEmbedder: def test_init_default(self, monkeypatch, mock_check_valid_model): monkeypatch.setenv("HF_API_TOKEN", "fake-api-token") embedder = HuggingFaceTEITextEmbedder() assert embedder.model == "BAAI/bge-small-en-v1.5" assert embedder.url is None assert embedder.token == Secret.from_env_var("HF_API_TOKEN", strict=False) assert embedder.prefix == "" assert embedder.suffix == "" def test_init_with_parameters(self, mock_check_valid_model): embedder = HuggingFaceTEITextEmbedder( model="sentence-transformers/all-mpnet-base-v2", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), prefix="prefix", suffix="suffix", ) assert embedder.model == "sentence-transformers/all-mpnet-base-v2" assert embedder.url == "https://some_embedding_model.com" assert embedder.token == Secret.from_token("fake-api-token") assert embedder.prefix == "prefix" assert embedder.suffix == "suffix" def test_initialize_with_invalid_url(self, mock_check_valid_model): with pytest.raises(ValueError): HuggingFaceTEITextEmbedder(model="sentence-transformers/all-mpnet-base-v2", url="invalid_url") def test_initialize_with_url_but_invalid_model(self, mock_check_valid_model): # When custom TEI endpoint is used via URL, model must be provided and valid HuggingFace Hub model id mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id") with pytest.raises(RepositoryNotFoundError): HuggingFaceTEITextEmbedder(model="invalid_model_id", url="https://some_embedding_model.com") def test_to_dict(self, mock_check_valid_model): component = HuggingFaceTEITextEmbedder() data = component.to_dict() assert data == { "type": "haystack.components.embedders.hugging_face_tei_text_embedder.HuggingFaceTEITextEmbedder", "init_parameters": { "token": {"env_vars": ["HF_API_TOKEN"], "strict": False, "type": "env_var"}, "model": "BAAI/bge-small-en-v1.5", "url": None, "prefix": "", "suffix": "", }, } def test_to_dict_with_custom_init_parameters(self, mock_check_valid_model): component = HuggingFaceTEITextEmbedder( model="sentence-transformers/all-mpnet-base-v2", url="https://some_embedding_model.com", token=Secret.from_env_var("ENV_VAR", strict=False), prefix="prefix", suffix="suffix", ) data = component.to_dict() assert data == { "type": "haystack.components.embedders.hugging_face_tei_text_embedder.HuggingFaceTEITextEmbedder", "init_parameters": { "token": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"}, "model": "sentence-transformers/all-mpnet-base-v2", "url": "https://some_embedding_model.com", "prefix": "prefix", "suffix": "suffix", }, } def test_run(self, mock_check_valid_model): with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch: mock_embedding_patch.side_effect = mock_embedding_generation embedder = HuggingFaceTEITextEmbedder( model="BAAI/bge-small-en-v1.5", token=Secret.from_token("fake-api-token"), prefix="prefix ", suffix=" suffix", ) result = embedder.run(text="The food was delicious") mock_embedding_patch.assert_called_once_with(text="prefix The food was delicious suffix") assert len(result["embedding"]) == 384 assert all(isinstance(x, float) for x in result["embedding"]) def test_run_wrong_input_format(self, mock_check_valid_model): embedder = HuggingFaceTEITextEmbedder( model="BAAI/bge-small-en-v1.5", url="https://some_embedding_model.com", token=Secret.from_token("fake-api-token"), ) list_integers_input = [1, 2, 3] with pytest.raises(TypeError, match="HuggingFaceTEITextEmbedder expects a string as an input"): embedder.run(text=list_integers_input)