--- title: "Google Vertex" id: integrations-google-vertex description: "Google Vertex integration for Haystack" slug: "/integrations-google-vertex" --- ## Module haystack\_integrations.components.generators.google\_vertex.gemini ### VertexAIGeminiGenerator `VertexAIGeminiGenerator` enables text generation using Google Gemini models. Usage example: ```python from haystack_integrations.components.generators.google_vertex import VertexAIGeminiGenerator gemini = VertexAIGeminiGenerator() result = gemini.run(parts = ["What is the most interesting thing you know?"]) for answer in result["replies"]: print(answer) >>> 1. **The Origin of Life:** How and where did life begin? The answers to this ... >>> 2. **The Unseen Universe:** The vast majority of the universe is ... >>> 3. **Quantum Entanglement:** This eerie phenomenon in quantum mechanics allows ... >>> 4. **Time Dilation:** Einstein's theory of relativity revealed that time can ... >>> 5. **The Fermi Paradox:** Despite the vastness of the universe and the ... >>> 6. **Biological Evolution:** The idea that life evolves over time through natural ... >>> 7. **Neuroplasticity:** The brain's ability to adapt and change throughout life, ... >>> 8. **The Goldilocks Zone:** The concept of the habitable zone, or the Goldilocks zone, ... >>> 9. **String Theory:** This theoretical framework in physics aims to unify all ... >>> 10. **Consciousness:** The nature of human consciousness and how it arises ... ``` #### VertexAIGeminiGenerator.\_\_init\_\_ ```python def __init__(*, model: str = "gemini-2.0-flash", project_id: Optional[str] = None, location: Optional[str] = None, generation_config: Optional[Union[GenerationConfig, Dict[str, Any]]] = None, safety_settings: Optional[Dict[HarmCategory, HarmBlockThreshold]] = None, system_instruction: Optional[Union[str, ByteStream, Part]] = None, streaming_callback: Optional[Callable[[StreamingChunk], None]] = None) ``` Multi-modal generator using Gemini model via Google Vertex AI. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `model`: Name of the model to use. For available models, see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models. - `location`: The default location to use when making API calls, if not set uses us-central-1. - `generation_config`: The generation config to use. Can either be a [`GenerationConfig`](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.GenerationConfig) object or a dictionary of parameters. Accepted fields are: - temperature - top_p - top_k - candidate_count - max_output_tokens - stop_sequences - `safety_settings`: The safety settings to use. See the documentation for [HarmBlockThreshold](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmBlockThreshold) and [HarmCategory](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmCategory) for more details. - `system_instruction`: Default system instruction to use for generating content. - `streaming_callback`: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. #### VertexAIGeminiGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAIGeminiGenerator.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAIGeminiGenerator" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAIGeminiGenerator.run ```python @component.output_types(replies=List[str]) def run(parts: Variadic[Union[str, ByteStream, Part]], streaming_callback: Optional[Callable[[StreamingChunk], None]] = None) ``` Generates content using the Gemini model. **Arguments**: - `parts`: Prompt for the model. - `streaming_callback`: A callback function that is called when a new token is received from the stream. **Returns**: A dictionary with the following keys: - `replies`: A list of generated content. ## Module haystack\_integrations.components.generators.google\_vertex.captioner ### VertexAIImageCaptioner `VertexAIImageCaptioner` enables text generation using Google Vertex AI imagetext generative model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). Usage example: ```python import requests from haystack.dataclasses.byte_stream import ByteStream from haystack_integrations.components.generators.google_vertex import VertexAIImageCaptioner captioner = VertexAIImageCaptioner() image = ByteStream( data=requests.get( "https://raw.githubusercontent.com/deepset-ai/haystack-core-integrations/main/integrations/google_vertex/example_assets/robot1.jpg" ).content ) result = captioner.run(image=image) for caption in result["captions"]: print(caption) >>> two gold robots are standing next to each other in the desert ``` #### VertexAIImageCaptioner.\_\_init\_\_ ```python def __init__(*, model: str = "imagetext", project_id: Optional[str] = None, location: Optional[str] = None, **kwargs) ``` Generate image captions using a Google Vertex AI model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `model`: Name of the model to use. - `location`: The default location to use when making API calls, if not set uses us-central-1. Defaults to None. - `kwargs`: Additional keyword arguments to pass to the model. For a list of supported arguments see the `ImageTextModel.get_captions()` documentation. #### VertexAIImageCaptioner.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAIImageCaptioner.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAIImageCaptioner" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAIImageCaptioner.run ```python @component.output_types(captions=List[str]) def run(image: ByteStream) ``` Prompts the model to generate captions for the given image. **Arguments**: - `image`: The image to generate captions for. **Returns**: A dictionary with the following keys: - `captions`: A list of captions generated by the model. ## Module haystack\_integrations.components.generators.google\_vertex.code\_generator ### VertexAICodeGenerator This component enables code generation using Google Vertex AI generative model. `VertexAICodeGenerator` supports `code-bison`, `code-bison-32k`, and `code-gecko`. Usage example: ```python from haystack_integrations.components.generators.google_vertex import VertexAICodeGenerator generator = VertexAICodeGenerator() result = generator.run(prefix="def to_json(data):") for answer in result["replies"]: print(answer) >>> ```python >>> import json >>> >>> def to_json(data): >>> """Converts a Python object to a JSON string. >>> >>> Args: >>> data: The Python object to convert. >>> >>> Returns: >>> A JSON string representing the Python object. >>> """ >>> >>> return json.dumps(data) >>> ``` ``` #### VertexAICodeGenerator.\_\_init\_\_ ```python def __init__(*, model: str = "code-bison", project_id: Optional[str] = None, location: Optional[str] = None, **kwargs) ``` Generate code using a Google Vertex AI model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `model`: Name of the model to use. - `location`: The default location to use when making API calls, if not set uses us-central-1. - `kwargs`: Additional keyword arguments to pass to the model. For a list of supported arguments see the `TextGenerationModel.predict()` documentation. #### VertexAICodeGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAICodeGenerator.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAICodeGenerator" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAICodeGenerator.run ```python @component.output_types(replies=List[str]) def run(prefix: str, suffix: Optional[str] = None) ``` Generate code using a Google Vertex AI model. **Arguments**: - `prefix`: Code before the current point. - `suffix`: Code after the current point. **Returns**: A dictionary with the following keys: - `replies`: A list of generated code snippets. ## Module haystack\_integrations.components.generators.google\_vertex.image\_generator ### VertexAIImageGenerator This component enables image generation using Google Vertex AI generative model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). Usage example: ```python from pathlib import Path from haystack_integrations.components.generators.google_vertex import VertexAIImageGenerator generator = VertexAIImageGenerator() result = generator.run(prompt="Generate an image of a cute cat") result["images"][0].to_file(Path("my_image.png")) ``` #### VertexAIImageGenerator.\_\_init\_\_ ```python def __init__(*, model: str = "imagegeneration", project_id: Optional[str] = None, location: Optional[str] = None, **kwargs) ``` Generates images using a Google Vertex AI model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `model`: Name of the model to use. - `location`: The default location to use when making API calls, if not set uses us-central-1. - `kwargs`: Additional keyword arguments to pass to the model. For a list of supported arguments see the `ImageGenerationModel.generate_images()` documentation. #### VertexAIImageGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAIImageGenerator.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAIImageGenerator" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAIImageGenerator.run ```python @component.output_types(images=List[ByteStream]) def run(prompt: str, negative_prompt: Optional[str] = None) ``` Produces images based on the given prompt. **Arguments**: - `prompt`: The prompt to generate images from. - `negative_prompt`: A description of what you want to omit in the generated images. **Returns**: A dictionary with the following keys: - `images`: A list of ByteStream objects, each containing an image. ## Module haystack\_integrations.components.generators.google\_vertex.question\_answering ### VertexAIImageQA This component enables text generation (image captioning) using Google Vertex AI generative models. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). Usage example: ```python from haystack.dataclasses.byte_stream import ByteStream from haystack_integrations.components.generators.google_vertex import VertexAIImageQA qa = VertexAIImageQA() image = ByteStream.from_file_path("dog.jpg") res = qa.run(image=image, question="What color is this dog") print(res["replies"][0]) >>> white ``` #### VertexAIImageQA.\_\_init\_\_ ```python def __init__(*, model: str = "imagetext", project_id: Optional[str] = None, location: Optional[str] = None, **kwargs) ``` Answers questions about an image using a Google Vertex AI model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `model`: Name of the model to use. - `location`: The default location to use when making API calls, if not set uses us-central-1. - `kwargs`: Additional keyword arguments to pass to the model. For a list of supported arguments see the `ImageTextModel.ask_question()` documentation. #### VertexAIImageQA.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAIImageQA.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAIImageQA" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAIImageQA.run ```python @component.output_types(replies=List[str]) def run(image: ByteStream, question: str) ``` Prompts model to answer a question about an image. **Arguments**: - `image`: The image to ask the question about. - `question`: The question to ask. **Returns**: A dictionary with the following keys: - `replies`: A list of answers to the question. ## Module haystack\_integrations.components.generators.google\_vertex.text\_generator ### VertexAITextGenerator This component enables text generation using Google Vertex AI generative models. `VertexAITextGenerator` supports `text-bison`, `text-unicorn` and `text-bison-32k` models. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). Usage example: ```python from haystack_integrations.components.generators.google_vertex import VertexAITextGenerator generator = VertexAITextGenerator() res = generator.run("Tell me a good interview question for a software engineer.") print(res["replies"][0]) >>> **Question:** >>> You are given a list of integers and a target sum. >>> Find all unique combinations of numbers in the list that add up to the target sum. >>> >>> **Example:** >>> >>> ``` >>> Input: [1, 2, 3, 4, 5], target = 7 >>> Output: [[1, 2, 4], [3, 4]] >>> ``` >>> >>> **Follow-up:** What if the list contains duplicate numbers? ``` #### VertexAITextGenerator.\_\_init\_\_ ```python def __init__(*, model: str = "text-bison", project_id: Optional[str] = None, location: Optional[str] = None, **kwargs) ``` Generate text using a Google Vertex AI model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `model`: Name of the model to use. - `location`: The default location to use when making API calls, if not set uses us-central-1. - `kwargs`: Additional keyword arguments to pass to the model. For a list of supported arguments see the `TextGenerationModel.predict()` documentation. #### VertexAITextGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAITextGenerator.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAITextGenerator" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAITextGenerator.run ```python @component.output_types(replies=List[str], safety_attributes=Dict[str, float], citations=List[Dict[str, Any]]) def run(prompt: str) ``` Prompts the model to generate text. **Arguments**: - `prompt`: The prompt to use for text generation. **Returns**: A dictionary with the following keys: - `replies`: A list of generated replies. - `safety_attributes`: A dictionary with the [safety scores](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/responsible-ai#safety_attribute_descriptions) of each answer. - `citations`: A list of citations for each answer. ## Module haystack\_integrations.components.generators.google\_vertex.chat.gemini ### VertexAIGeminiChatGenerator `VertexAIGeminiChatGenerator` enables chat completion using Google Gemini models. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). ### Usage example ```python from haystack.dataclasses import ChatMessage from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator gemini_chat = VertexAIGeminiChatGenerator() messages = [ChatMessage.from_user("Tell me the name of a movie")] res = gemini_chat.run(messages) print(res["replies"][0].text) >>> The Shawshank Redemption #### With Tool calling: ```python from typing import Annotated from haystack.utils import Secret from haystack.dataclasses.chat_message import ChatMessage from haystack.components.tools import ToolInvoker from haystack.tools import create_tool_from_function from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator __example function to get the current weather__ def get_current_weather( location: Annotated[str, "The city for which to get the weather, e.g. 'San Francisco'"] = "Munich", unit: Annotated[str, "The unit for the temperature, e.g. 'celsius'"] = "celsius", ) -> str: return f"The weather in {location} is sunny. The temperature is 20 {unit}." tool = create_tool_from_function(get_current_weather) tool_invoker = ToolInvoker(tools=[tool]) gemini_chat = VertexAIGeminiChatGenerator( model="gemini-2.0-flash-exp", tools=[tool], ) user_message = [ChatMessage.from_user("What is the temperature in celsius in Berlin?")] replies = gemini_chat.run(messages=user_message)["replies"] print(replies[0].tool_calls) __actually invoke the tool__ tool_messages = tool_invoker.run(messages=replies)["tool_messages"] messages = user_message + replies + tool_messages __transform the tool call result into a human readable message__ final_replies = gemini_chat.run(messages=messages)["replies"] print(final_replies[0].text) ``` #### VertexAIGeminiChatGenerator.\_\_init\_\_ ```python def __init__(*, model: str = "gemini-1.5-flash", project_id: Optional[str] = None, location: Optional[str] = None, generation_config: Optional[Union[GenerationConfig, Dict[str, Any]]] = None, safety_settings: Optional[Dict[HarmCategory, HarmBlockThreshold]] = None, tools: Optional[List[Tool]] = None, tool_config: Optional[ToolConfig] = None, streaming_callback: Optional[StreamingCallbackT] = None) ``` `VertexAIGeminiChatGenerator` enables chat completion using Google Gemini models. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `model`: Name of the model to use. For available models, see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models. - `project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `location`: The default location to use when making API calls, if not set uses us-central-1. Defaults to None. - `generation_config`: Configuration for the generation process. See the [GenerationConfig documentation](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.GenerationConfig for a list of supported arguments. - `safety_settings`: Safety settings to use when generating content. See the documentation for [HarmBlockThreshold](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmBlockThreshold) and [HarmCategory](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmCategory) for more details. - `tools`: A list of tools for which the model can prepare calls. - `tool_config`: The tool config to use. See the documentation for [ToolConfig] (https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models.ToolConfig) - `streaming_callback`: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. #### VertexAIGeminiChatGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAIGeminiChatGenerator.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAIGeminiChatGenerator" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. #### VertexAIGeminiChatGenerator.run ```python @component.output_types(replies=List[ChatMessage]) def run(messages: List[ChatMessage], streaming_callback: Optional[StreamingCallbackT] = None, *, tools: Optional[List[Tool]] = None) ``` **Arguments**: - `messages`: A list of `ChatMessage` instances, representing the input messages. - `streaming_callback`: A callback function that is called when a new token is received from the stream. - `tools`: A list of tools for which the model can prepare calls. If set, it will override the `tools` parameter set during component initialization. **Returns**: A dictionary containing the following key: - `replies`: A list containing the generated responses as `ChatMessage` instances. #### VertexAIGeminiChatGenerator.run\_async ```python @component.output_types(replies=List[ChatMessage]) async def run_async(messages: List[ChatMessage], streaming_callback: Optional[StreamingCallbackT] = None, *, tools: Optional[List[Tool]] = None) ``` Async version of the run method. Generates text based on the provided messages. **Arguments**: - `messages`: A list of `ChatMessage` instances, representing the input messages. - `streaming_callback`: A callback function that is called when a new token is received from the stream. - `tools`: A list of tools for which the model can prepare calls. If set, it will override the `tools` parameter set during component initialization. **Returns**: A dictionary containing the following key: - `replies`: A list containing the generated responses as `ChatMessage` instances. ## Module haystack\_integrations.components.embedders.google\_vertex.document\_embedder ### VertexAIDocumentEmbedder Embed text using Vertex AI Embeddings API. See available models in the official [Google documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#syntax). Usage example: ```python from haystack import Document from haystack_integrations.components.embedders.google_vertex import VertexAIDocumentEmbedder doc = Document(content="I love pizza!") document_embedder = VertexAIDocumentEmbedder(model="text-embedding-005") result = document_embedder.run([doc]) print(result['documents'][0].embedding) # [-0.044606007635593414, 0.02857724390923977, -0.03549133986234665, ``` #### VertexAIDocumentEmbedder.\_\_init\_\_ ```python def __init__(model: Literal[ "text-embedding-004", "text-embedding-005", "textembedding-gecko-multilingual@001", "text-multilingual-embedding-002", "text-embedding-large-exp-03-07", ], task_type: Literal[ "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY", ] = "RETRIEVAL_DOCUMENT", gcp_region_name: Optional[Secret] = Secret.from_env_var( "GCP_DEFAULT_REGION", strict=False), gcp_project_id: Optional[Secret] = Secret.from_env_var( "GCP_PROJECT_ID", strict=False), batch_size: int = 32, max_tokens_total: int = 20000, time_sleep: int = 30, retries: int = 3, progress_bar: bool = True, truncate_dim: Optional[int] = None, meta_fields_to_embed: Optional[List[str]] = None, embedding_separator: str = "\n") -> None ``` Generate Document Embedder using a Google Vertex AI model. Authenticates using Google Cloud Application Default Credentials (ADCs). For more information see the official [Google documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). **Arguments**: - `model`: Name of the model to use. - `task_type`: The type of task for which the embeddings are being generated. For more information see the official [Google documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype). - `gcp_region_name`: The default location to use when making API calls, if not set uses us-central-1. - `gcp_project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `batch_size`: The number of documents to process in a single batch. - `max_tokens_total`: The maximum number of tokens to process in total. - `time_sleep`: The time to sleep between retries in seconds. - `retries`: The number of retries in case of failure. - `progress_bar`: Whether to display a progress bar during processing. - `truncate_dim`: The dimension to truncate the embeddings to, if specified. - `meta_fields_to_embed`: A list of metadata fields to include in the embeddings. - `embedding_separator`: The separator to use between different embeddings. **Raises**: - `ValueError`: If the provided model is not in the list of supported models. #### VertexAIDocumentEmbedder.get\_text\_embedding\_input ```python def get_text_embedding_input( batch: List[Document]) -> List[TextEmbeddingInput] ``` Converts a batch of Document objects into a list of TextEmbeddingInput objects. **Arguments**: - `batch` _List[Document]_ - A list of Document objects to be converted. **Returns**: - `List[TextEmbeddingInput]` - A list of TextEmbeddingInput objects created from the input documents. #### VertexAIDocumentEmbedder.embed\_batch\_by\_smaller\_batches ```python def embed_batch_by_smaller_batches(batch: List[str], subbatch=1) -> List[List[float]] ``` Embeds a batch of text strings by dividing them into smaller sub-batches. **Arguments**: - `batch` _List[str]_ - A list of text strings to be embedded. - `subbatch` _int, optional_ - The size of the smaller sub-batches. Defaults to 1. **Returns**: - `List[List[float]]` - A list of embeddings, where each embedding is a list of floats. **Raises**: - `Exception` - If embedding fails at the item level, an exception is raised with the error details. #### VertexAIDocumentEmbedder.embed\_batch ```python def embed_batch(batch: List[str]) -> List[List[float]] ``` Generate embeddings for a batch of text strings. **Arguments**: - `batch` _List[str]_ - A list of text strings to be embedded. **Returns**: - `List[List[float]]` - A list of embeddings, where each embedding is a list of floats. #### VertexAIDocumentEmbedder.run ```python @component.output_types(documents=List[Document]) def run(documents: List[Document]) ``` Processes all documents in batches while adhering to the API's token limit per request. **Arguments**: - `documents`: A list of documents to embed. **Returns**: A dictionary with the following keys: - `documents`: A list of documents with embeddings. #### VertexAIDocumentEmbedder.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAIDocumentEmbedder.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAIDocumentEmbedder" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component. ## Module haystack\_integrations.components.embedders.google\_vertex.text\_embedder ### VertexAITextEmbedder Embed text using VertexAI Text Embeddings API. See available models in the official [Google documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#syntax). Usage example: ```python from haystack_integrations.components.embedders.google_vertex import VertexAITextEmbedder text_to_embed = "I love pizza!" text_embedder = VertexAITextEmbedder(model="text-embedding-005") print(text_embedder.run(text_to_embed)) # {'embedding': [-0.08127457648515701, 0.03399784862995148, -0.05116401985287666, ...] ``` #### VertexAITextEmbedder.\_\_init\_\_ ```python def __init__(model: Literal[ "text-embedding-004", "text-embedding-005", "textembedding-gecko-multilingual@001", "text-multilingual-embedding-002", "text-embedding-large-exp-03-07", ], task_type: Literal[ "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY", ] = "RETRIEVAL_QUERY", gcp_region_name: Optional[Secret] = Secret.from_env_var( "GCP_DEFAULT_REGION", strict=False), gcp_project_id: Optional[Secret] = Secret.from_env_var( "GCP_PROJECT_ID", strict=False), progress_bar: bool = True, truncate_dim: Optional[int] = None) -> None ``` Initializes the TextEmbedder with the specified model, task type, and GCP configuration. **Arguments**: - `model`: Name of the model to use. - `task_type`: The type of task for which the embeddings are being generated. For more information see the official [Google documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype). - `gcp_region_name`: The default location to use when making API calls, if not set uses us-central-1. - `gcp_project_id`: ID of the GCP project to use. By default, it is set during Google Cloud authentication. - `progress_bar`: Whether to display a progress bar during processing. - `truncate_dim`: The dimension to truncate the embeddings to, if specified. #### VertexAITextEmbedder.run ```python @component.output_types(embedding=List[float]) def run(text: Union[List[Document], List[str], str]) ``` Processes text in batches while adhering to the API's token limit per request. **Arguments**: - `text`: The text to embed. **Returns**: A dictionary with the following keys: - `embedding`: The embedding of the input text. #### VertexAITextEmbedder.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serializes the component to a dictionary. **Returns**: Dictionary with serialized data. #### VertexAITextEmbedder.from\_dict ```python @classmethod def from_dict(cls, data: Dict[str, Any]) -> "VertexAITextEmbedder" ``` Deserializes the component from a dictionary. **Arguments**: - `data`: Dictionary to deserialize from. **Returns**: Deserialized component.