haystack/test/tools/test_parameters_schema_utils.py
Stefano Fiorucci 7c6323b960
refactor: support PEP604 typing syntax (X|Y and X|None) (#10255)
* adopt X|Y syntax: draft

* cast Union

* fix pylint + state testing

* use X|Y

* rm unused imports

* trigger e2e tests

* fix + simplification

* add compatibility tests

* rm e2e tests trigger

* fix

* add relnote

* simplify/fix pep604 union parsing

* fix comments

* test _is_optional_type

* introduce _build_pep604_union_type; make _is_union_type private

* try removing problematic test
2025-12-19 15:47:51 +01:00

337 lines
12 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from typing import Union
import pytest
from pydantic import Field, create_model
from haystack.dataclasses import ByteStream, ChatMessage, Document, TextContent, ToolCall, ToolCallResult
from haystack.tools.from_function import _remove_title_from_schema
from haystack.tools.parameters_schema_utils import _resolve_type
BYTE_STREAM_SCHEMA = {
"type": "object",
"properties": {
"data": {"type": "string", "description": "The binary data stored in Bytestream.", "format": "binary"},
"meta": {
"type": "object",
"default": {},
"description": "Additional metadata to be stored with the ByteStream.",
"additionalProperties": True,
},
"mime_type": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"description": "The mime type of the binary data.",
},
},
"required": ["data"],
}
SPARSE_EMBEDDING_SCHEMA = {
"type": "object",
"properties": {
"indices": {
"type": "array",
"description": "List of indices of non-zero elements in the embedding.",
"items": {"type": "integer"},
},
"values": {
"type": "array",
"description": "List of values of non-zero elements in the embedding.",
"items": {"type": "number"},
},
},
"required": ["indices", "values"],
}
DOCUMENT_SCHEMA = {
"type": "object",
"properties": {
"id": {
"type": "string",
"description": "Unique identifier for the document. When not set, it's generated based on the Document "
"fields' values.",
"default": "",
},
"content": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"description": "Text of the document, if the document contains text.",
},
"blob": {
"anyOf": [{"$ref": "#/$defs/ByteStream"}, {"type": "null"}],
"default": None,
"description": "Binary data associated with the document, if the document has any binary data associated "
"with it.",
},
"meta": {
"type": "object",
"description": "Additional custom metadata for the document. Must be JSON-serializable.",
"default": {},
"additionalProperties": True,
},
"score": {
"anyOf": [{"type": "number"}, {"type": "null"}],
"default": None,
"description": "Score of the document. Used for ranking, usually assigned by retrievers.",
},
"embedding": {
"anyOf": [{"type": "array", "items": {"type": "number"}}, {"type": "null"}],
"default": None,
"description": "dense vector representation of the document.",
},
"sparse_embedding": {
"anyOf": [{"$ref": "#/$defs/SparseEmbedding"}, {"type": "null"}],
"default": None,
"description": "sparse vector representation of the document.",
},
},
}
TEXT_CONTENT_SCHEMA = {
"type": "object",
"properties": {"text": {"type": "string", "description": "The text content of the message."}},
"required": ["text"],
}
TOOL_CALL_SCHEMA = {
"type": "object",
"properties": {
"tool_name": {"type": "string", "description": "The name of the Tool to call."},
"arguments": {
"type": "object",
"description": "The arguments to call the Tool with.",
"additionalProperties": True,
},
"extra": {
"anyOf": [{"additionalProperties": True, "type": "object"}, {"type": "null"}],
"default": None,
"description": "Dictionary of extra information about the Tool call. Use to "
"store provider-specific\n"
"information. To avoid serialization issues, values should be "
"JSON serializable.",
},
"id": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"description": "The ID of the Tool call.",
},
},
"required": ["tool_name", "arguments"],
}
TOOL_CALL_RESULT_SCHEMA = {
"type": "object",
"properties": {
"result": {"type": "string", "description": "The result of the Tool invocation."},
"origin": {"$ref": "#/$defs/ToolCall", "description": "The Tool call that produced this result."},
"error": {"type": "boolean", "description": "Whether the Tool invocation resulted in an error."},
},
"required": ["result", "origin", "error"],
}
REASONING_CONTENT_SCHEMA = {
"type": "object",
"properties": {
"reasoning_text": {"type": "string", "description": "The reasoning text produced by the model."},
"extra": {
"type": "object",
"default": {},
"description": (
"Dictionary of extra information about the reasoning content. Use to store "
"provider-specific\ninformation. To avoid serialization issues, values should be JSON serializable."
),
"additionalProperties": True,
},
},
"required": ["reasoning_text"],
}
IMAGE_CONTENT_SCHEMA = {
"type": "object",
"properties": {
"base64_image": {"type": "string", "description": "A base64 string representing the image."},
"meta": {
"type": "object",
"default": {},
"description": "Optional metadata for the image.",
"additionalProperties": True,
},
"mime_type": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"description": 'The MIME type of the image (e.g. "image/png", "image/jpeg").\n'
"Providing this value is recommended, as most LLM providers require it.\n"
"If not provided, the MIME type is guessed from the base64 string, "
"which can be slow and not always reliable.",
},
"validation": {
"type": "boolean",
"default": True,
"description": "If True (default), a validation process is performed:\n"
"- Check whether the base64 string is valid;\n"
"- Guess the MIME type if not provided;\n"
"- Check if the MIME type is a valid image MIME type.\n"
"Set to False to skip validation and speed up initialization.",
},
"detail": {
"anyOf": [{"enum": ["auto", "high", "low"], "type": "string"}, {"type": "null"}],
"default": None,
"description": (
'Optional detail level of the image (only supported by OpenAI). One of "auto", "high", or "low".'
),
},
},
"required": ["base64_image"],
}
CHAT_ROLE_SCHEMA = {
"description": "Enumeration representing the roles within a chat.",
"enum": ["user", "system", "assistant", "tool"],
"type": "string",
}
CHAT_MESSAGE_SCHEMA = {
"type": "object",
"properties": {
"role": {"$ref": "#/$defs/ChatRole", "description": "Field 'role' of 'ChatMessage'."},
"content": {
"type": "array",
"description": "Field 'content' of 'ChatMessage'.",
"items": {
"anyOf": [
{"$ref": "#/$defs/TextContent"},
{"$ref": "#/$defs/ToolCall"},
{"$ref": "#/$defs/ToolCallResult"},
{"$ref": "#/$defs/ImageContent"},
{"$ref": "#/$defs/ReasoningContent"},
]
},
},
"name": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"description": "Field 'name' of 'ChatMessage'.",
},
"meta": {
"type": "object",
"description": "Field 'meta' of 'ChatMessage'.",
"default": {},
"additionalProperties": True,
},
},
"required": ["role", "content"],
}
@pytest.mark.parametrize(
"python_type, description, expected_schema, expected_defs_schema",
[
(
ByteStream,
"A byte stream",
{"$ref": "#/$defs/ByteStream", "description": "A byte stream"},
{"ByteStream": BYTE_STREAM_SCHEMA},
),
(
Document,
"A document",
{"$ref": "#/$defs/Document", "description": "A document"},
{"Document": DOCUMENT_SCHEMA, "SparseEmbedding": SPARSE_EMBEDDING_SCHEMA, "ByteStream": BYTE_STREAM_SCHEMA},
),
(
TextContent,
"A text content",
{"$ref": "#/$defs/TextContent", "description": "A text content"},
{"TextContent": TEXT_CONTENT_SCHEMA},
),
(
ToolCall,
"A tool call",
{"$ref": "#/$defs/ToolCall", "description": "A tool call"},
{"ToolCall": TOOL_CALL_SCHEMA},
),
(
ToolCallResult,
"A tool call result",
{"$ref": "#/$defs/ToolCallResult", "description": "A tool call result"},
{"ToolCallResult": TOOL_CALL_RESULT_SCHEMA, "ToolCall": TOOL_CALL_SCHEMA},
),
(
ChatMessage,
"A chat message",
{"$ref": "#/$defs/ChatMessage", "description": "A chat message"},
{
"ChatMessage": CHAT_MESSAGE_SCHEMA,
"TextContent": TEXT_CONTENT_SCHEMA,
"ToolCall": TOOL_CALL_SCHEMA,
"ToolCallResult": TOOL_CALL_RESULT_SCHEMA,
"ChatRole": CHAT_ROLE_SCHEMA,
"ImageContent": IMAGE_CONTENT_SCHEMA,
"ReasoningContent": REASONING_CONTENT_SCHEMA,
},
),
(
list[Document],
"A list of documents",
{"type": "array", "description": "A list of documents", "items": {"$ref": "#/$defs/Document"}},
{"Document": DOCUMENT_SCHEMA, "SparseEmbedding": SPARSE_EMBEDDING_SCHEMA, "ByteStream": BYTE_STREAM_SCHEMA},
),
(
list[ChatMessage],
"A list of chat messages",
{"type": "array", "description": "A list of chat messages", "items": {"$ref": "#/$defs/ChatMessage"}},
{
"ChatMessage": CHAT_MESSAGE_SCHEMA,
"TextContent": TEXT_CONTENT_SCHEMA,
"ToolCall": TOOL_CALL_SCHEMA,
"ToolCallResult": TOOL_CALL_RESULT_SCHEMA,
"ChatRole": CHAT_ROLE_SCHEMA,
"ImageContent": IMAGE_CONTENT_SCHEMA,
"ReasoningContent": REASONING_CONTENT_SCHEMA,
},
),
# PEP 604 union types (X | None syntax)
(
Document | None,
"An optional document",
{"anyOf": [{"$ref": "#/$defs/Document"}, {"type": "null"}], "description": "An optional document"},
{"Document": DOCUMENT_SCHEMA, "SparseEmbedding": SPARSE_EMBEDDING_SCHEMA, "ByteStream": BYTE_STREAM_SCHEMA},
),
],
)
def test_create_parameters_schema_haystack_dataclasses(python_type, description, expected_schema, expected_defs_schema):
resolved_type = _resolve_type(python_type)
model = create_model(
"run", __doc__="A test function", input_name=(resolved_type, Field(default=..., description=description))
)
parameters_schema = model.model_json_schema()
_remove_title_from_schema(parameters_schema)
defs_schema = parameters_schema["$defs"]
assert defs_schema == expected_defs_schema
property_schema = parameters_schema["properties"]["input_name"]
assert property_schema == expected_schema
def test_resolve_type_pep_604():
resolved = _resolve_type(str | int)
assert resolved == Union[str, int]
resolved = _resolve_type(str | None)
assert resolved == Union[str, None]
resolved = _resolve_type(str | int | float)
assert resolved == Union[str, int, float]
resolved = _resolve_type(list[str] | None)
assert resolved == Union[list[str], None]
resolved = _resolve_type(dict[str, int] | list[str])
assert resolved == Union[dict[str, int], list[str]]