Guna Palanivel 9082c97155
feat: Add reasoning support for HuggingFaceAPIChatGenerator (#9701) (#10248)
* feat: add reasoning support for HuggingFaceAPIChatGenerator

Add reasoning field extraction for both streaming and non-streaming modes
in HuggingFaceAPIChatGenerator, aligning with the parent issue #9700
initiative to standardize reasoning support across all ChatGenerators.

Changes:
- Extract reasoning from choice.message.reasoning in non-streaming mode
- Extract reasoning from choice.delta.reasoning in streaming mode
- Accumulate reasoning chunks in streaming and create final ReasoningContent
- Add backward compatibility check using hasattr() for API responses
- Add 11 comprehensive tests covering all reasoning scenarios

The reasoning content is stored in ChatMessage.reasoning field (not meta),
following the pattern established in PR #9696.

Closes #9701
Ref #9700

* fix: skip ReasoningContent in convert_message_to_hf_format for multi-turn

Address PR review feedback:
- Update convert_message_to_hf_format to explicitly skip ReasoningContent
  during conversion (HF API doesn't support reasoning in input messages)
- Add multi-turn integration test with reasoning model
- Add unit tests for ReasoningContent handling in conversion

* fix: use reStructuredText formatting in release note

Convert Markdown to reStructuredText:
- Use double backticks for inline code
- Use .. code:: python directive for code blocks

* refactor: extract common reasoning extraction logic into helper function

Address review feedback from @mpangrazzi:
- Extract duplicated reasoning extraction code into _extract_reasoning_content()
- Use helper function in streaming, sync, and async methods
- Shorten release note to be more concise

* test: increase max_tokens to 300 in multi-turn HuggingFaceAPIChatGenerator integration test for stability

---------

Co-authored-by: Michele Pangrazzi <xmikex83@gmail.com>
2025-12-19 14:28:50 +01:00

787 lines
29 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from unittest.mock import call, patch
from openai.types.chat import chat_completion_chunk
from haystack.components.generators.utils import _convert_streaming_chunks_to_chat_message, print_streaming_chunk
from haystack.dataclasses import (
ComponentInfo,
ReasoningContent,
StreamingChunk,
ToolCall,
ToolCallDelta,
ToolCallResult,
)
def test_convert_streaming_chunks_to_chat_message_tool_calls_in_any_chunk():
chunks = [
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.910076",
},
component_info=ComponentInfo(name="test", type="test"),
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id="call_ZOj5l67zhZOx6jqjg7ATQwb6",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
arguments="", name="rag_pipeline_tool"
),
type="function",
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.913919",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
start=True,
tool_calls=[
ToolCallDelta(id="call_ZOj5l67zhZOx6jqjg7ATQwb6", tool_name="rag_pipeline_tool", arguments="", index=0)
],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='{"qu')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.914439",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments='{"qu', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='ery":')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.924146",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments='ery":', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments=' "Wher')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.924420",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments=' "Wher', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="e do")
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.944398",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments="e do", index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="es Ma")
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.944958",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments="es Ma", index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="rk liv")
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.945507",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments="rk liv", index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='e?"}')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.946018",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments='e?"}', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1,
id="call_STxsYY69wVOvxWqopAt3uWTB",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="", name="get_weather"),
type="function",
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.946578",
},
component_info=ComponentInfo(name="test", type="test"),
index=1,
start=True,
tool_calls=[
ToolCallDelta(id="call_STxsYY69wVOvxWqopAt3uWTB", tool_name="get_weather", arguments="", index=1)
],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='{"ci')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.946981",
},
component_info=ComponentInfo(name="test", type="test"),
index=1,
tool_calls=[ToolCallDelta(arguments='{"ci', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='ty": ')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.947411",
},
component_info=ComponentInfo(name="test", type="test"),
index=1,
tool_calls=[ToolCallDelta(arguments='ty": ', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='"Berli')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.947643",
},
component_info=ComponentInfo(name="test", type="test"),
index=1,
tool_calls=[ToolCallDelta(arguments='"Berli', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='n"}')
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.947939",
},
component_info=ComponentInfo(name="test", type="test"),
index=1,
tool_calls=[ToolCallDelta(arguments='n"}', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": "tool_calls",
"received_at": "2025-02-19T16:02:55.948772",
},
component_info=ComponentInfo(name="test", type="test"),
finish_reason="tool_calls",
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.948772",
"usage": {
"completion_tokens": 42,
"prompt_tokens": 282,
"total_tokens": 324,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0,
},
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
},
},
component_info=ComponentInfo(name="test", type="test"),
),
]
# Convert chunks to a chat message
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
assert not result.texts
assert not result.text
# Verify both tool calls were found and processed
assert len(result.tool_calls) == 2
assert result.tool_calls[0].id == "call_ZOj5l67zhZOx6jqjg7ATQwb6"
assert result.tool_calls[0].tool_name == "rag_pipeline_tool"
assert result.tool_calls[0].arguments == {"query": "Where does Mark live?"}
assert result.tool_calls[1].id == "call_STxsYY69wVOvxWqopAt3uWTB"
assert result.tool_calls[1].tool_name == "get_weather"
assert result.tool_calls[1].arguments == {"city": "Berlin"}
# Verify meta information
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
assert result.meta["finish_reason"] == "tool_calls"
assert result.meta["index"] == 0
assert result.meta["completion_start_time"] == "2025-02-19T16:02:55.910076"
assert result.meta["usage"] == {
"completion_tokens": 42,
"prompt_tokens": 282,
"total_tokens": 324,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0,
},
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
}
def test_convert_streaming_chunk_to_chat_message_two_tool_calls_in_same_chunk():
chunks = [
StreamingChunk(
content="",
meta={
"model": "mistral-small-latest",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"usage": None,
},
component_info=ComponentInfo(
type="haystack_integrations.components.generators.mistral.chat.chat_generator.MistralChatGenerator",
name=None,
),
),
StreamingChunk(
content="",
meta={
"model": "mistral-small-latest",
"index": 0,
"finish_reason": "tool_calls",
"usage": {
"completion_tokens": 35,
"prompt_tokens": 77,
"total_tokens": 112,
"completion_tokens_details": None,
"prompt_tokens_details": None,
},
},
component_info=ComponentInfo(
type="haystack_integrations.components.generators.mistral.chat.chat_generator.MistralChatGenerator",
name=None,
),
index=0,
tool_calls=[
ToolCallDelta(index=0, tool_name="weather", arguments='{"city": "Paris"}', id="FL1FFlqUG"),
ToolCallDelta(index=1, tool_name="weather", arguments='{"city": "Berlin"}', id="xSuhp66iB"),
],
start=True,
finish_reason="tool_calls",
),
]
# Convert chunks to a chat message
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
assert not result.texts
assert not result.text
# Verify both tool calls were found and processed
assert len(result.tool_calls) == 2
assert result.tool_calls[0].id == "FL1FFlqUG"
assert result.tool_calls[0].tool_name == "weather"
assert result.tool_calls[0].arguments == {"city": "Paris"}
assert result.tool_calls[1].id == "xSuhp66iB"
assert result.tool_calls[1].tool_name == "weather"
assert result.tool_calls[1].arguments == {"city": "Berlin"}
def test_convert_streaming_chunk_to_chat_message_empty_tool_call_delta():
chunks = [
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.910076",
},
component_info=ComponentInfo(name="test", type="test"),
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id="call_ZOj5l67zhZOx6jqjg7ATQwb6",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
arguments='{"query":', name="rag_pipeline_tool"
),
type="function",
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.913919",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
start=True,
tool_calls=[
ToolCallDelta(
id="call_ZOj5l67zhZOx6jqjg7ATQwb6", tool_name="rag_pipeline_tool", arguments='{"query":', index=0
)
],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
arguments=' "Where does Mark live?"}'
),
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.924420",
},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_calls=[ToolCallDelta(arguments=' "Where does Mark live?"}', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction()
)
],
"finish_reason": "tool_calls",
"received_at": "2025-02-19T16:02:55.948772",
},
tool_calls=[ToolCallDelta(index=0)],
component_info=ComponentInfo(name="test", type="test"),
finish_reason="tool_calls",
index=0,
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.948772",
"usage": {
"completion_tokens": 42,
"prompt_tokens": 282,
"total_tokens": 324,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0,
},
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
},
},
component_info=ComponentInfo(name="test", type="test"),
),
]
# Convert chunks to a chat message
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
assert not result.texts
assert not result.text
# Verify both tool calls were found and processed
assert len(result.tool_calls) == 1
assert result.tool_calls[0].id == "call_ZOj5l67zhZOx6jqjg7ATQwb6"
assert result.tool_calls[0].tool_name == "rag_pipeline_tool"
assert result.tool_calls[0].arguments == {"query": "Where does Mark live?"}
assert result.meta["finish_reason"] == "tool_calls"
def test_convert_streaming_chunk_to_chat_message_with_empty_tool_call_arguments():
chunks = [
# Message start with input tokens
StreamingChunk(
content="",
meta={
"type": "message_start",
"message": {
"id": "msg_123",
"type": "message",
"role": "assistant",
"content": [],
"model": "claude-sonnet-4-20250514",
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": 25, "output_tokens": 0},
},
},
index=0,
tool_calls=[],
tool_call_result=None,
start=True,
finish_reason=None,
),
# Initial text content
StreamingChunk(
content="",
meta={"type": "content_block_start", "index": 0, "content_block": {"type": "text", "text": ""}},
index=1,
tool_calls=[],
tool_call_result=None,
start=True,
finish_reason=None,
),
StreamingChunk(
content="Let me check",
meta={"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": "Let me check"}},
index=2,
tool_calls=[],
tool_call_result=None,
start=False,
finish_reason=None,
),
StreamingChunk(
content=" the weather",
meta={"type": "content_block_delta", "index": 0, "delta": {"type": "text_delta", "text": " the weather"}},
index=3,
tool_calls=[],
tool_call_result=None,
start=False,
finish_reason=None,
),
# Tool use content
StreamingChunk(
content="",
meta={
"type": "content_block_start",
"index": 1,
"content_block": {"type": "tool_use", "id": "toolu_123", "name": "weather", "input": {}},
},
index=5,
tool_calls=[ToolCallDelta(index=1, id="toolu_123", tool_name="weather", arguments=None)],
tool_call_result=None,
start=True,
finish_reason=None,
),
StreamingChunk(
content="",
meta={"type": "content_block_delta", "index": 1, "delta": {"type": "input_json_delta", "partial_json": ""}},
index=7,
tool_calls=[ToolCallDelta(index=1, id=None, tool_name=None, arguments="")],
tool_call_result=None,
start=False,
finish_reason=None,
),
# Final message delta
StreamingChunk(
content="",
meta={
"type": "message_delta",
"delta": {"stop_reason": "tool_use", "stop_sequence": None},
"usage": {"completion_tokens": 40},
},
index=8,
tool_calls=[],
tool_call_result=None,
start=False,
finish_reason="tool_calls",
),
]
message = _convert_streaming_chunks_to_chat_message(chunks=chunks)
assert message.texts == ["Let me check the weather"]
assert len(message.tool_calls) == 1
assert message.tool_calls[0].arguments == {}
assert message.tool_calls[0].id == "toolu_123"
assert message.tool_calls[0].tool_name == "weather"
def test_print_streaming_chunk_content_only():
chunk = StreamingChunk(
content="Hello, world!",
meta={"model": "test-model"},
component_info=ComponentInfo(name="test", type="test"),
start=True,
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
expected_calls = [call("[ASSISTANT]\n", flush=True, end=""), call("Hello, world!", flush=True, end="")]
mock_print.assert_has_calls(expected_calls)
def test_print_streaming_chunk_tool_call():
chunk = StreamingChunk(
content="",
meta={"model": "test-model"},
component_info=ComponentInfo(name="test", type="test"),
start=True,
index=0,
tool_calls=[ToolCallDelta(id="call_123", tool_name="test_tool", arguments='{"param": "value"}', index=0)],
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
expected_calls = [
call("[TOOL CALL]\nTool: test_tool \nArguments: ", flush=True, end=""),
call('{"param": "value"}', flush=True, end=""),
]
mock_print.assert_has_calls(expected_calls)
def test_print_streaming_chunk_tool_call_result():
chunk = StreamingChunk(
content="",
meta={"model": "test-model"},
component_info=ComponentInfo(name="test", type="test"),
index=0,
tool_call_result=ToolCallResult(
result="Tool execution completed successfully",
origin=ToolCall(id="call_123", tool_name="test_tool", arguments={}),
error=False,
),
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
expected_calls = [call("[TOOL RESULT]\nTool execution completed successfully", flush=True, end="")]
mock_print.assert_has_calls(expected_calls)
def test_print_streaming_chunk_with_finish_reason():
chunk = StreamingChunk(
content="Final content.",
meta={"model": "test-model"},
component_info=ComponentInfo(name="test", type="test"),
start=True,
finish_reason="stop",
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
expected_calls = [
call("[ASSISTANT]\n", flush=True, end=""),
call("Final content.", flush=True, end=""),
call("\n\n", flush=True, end=""),
]
mock_print.assert_has_calls(expected_calls)
def test_print_streaming_chunk_empty_chunk():
chunk = StreamingChunk(
content="", meta={"model": "test-model"}, component_info=ComponentInfo(name="test", type="test")
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
mock_print.assert_not_called()
def test_convert_streaming_chunks_to_chat_message_with_reasoning():
"""Test that reasoning content is correctly accumulated from streaming chunks."""
chunks = [
StreamingChunk(
content="",
meta={"model": "test-model", "received_at": "2025-01-01T00:00:00"},
component_info=ComponentInfo(name="test", type="test"),
reasoning=ReasoningContent(reasoning_text="Let me think about this..."),
index=0,
),
StreamingChunk(
content="",
meta={"model": "test-model", "received_at": "2025-01-01T00:00:01"},
component_info=ComponentInfo(name="test", type="test"),
reasoning=ReasoningContent(reasoning_text=" The capital of France is Paris."),
index=0,
),
StreamingChunk(
content="Paris",
meta={"model": "test-model", "received_at": "2025-01-01T00:00:02"},
component_info=ComponentInfo(name="test", type="test"),
),
StreamingChunk(
content="",
meta={"model": "test-model", "received_at": "2025-01-01T00:00:03"},
component_info=ComponentInfo(name="test", type="test"),
finish_reason="stop",
),
]
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
assert result.text == "Paris"
assert result.reasoning is not None
assert isinstance(result.reasoning, ReasoningContent)
assert result.reasoning.reasoning_text == "Let me think about this... The capital of France is Paris."
assert result.meta["finish_reason"] == "stop"
def test_convert_streaming_chunks_to_chat_message_without_reasoning():
"""Test that messages without reasoning work correctly (backward compatibility)."""
chunks = [
StreamingChunk(
content="Hello",
meta={"model": "test-model", "received_at": "2025-01-01T00:00:00"},
component_info=ComponentInfo(name="test", type="test"),
),
StreamingChunk(
content=" world",
meta={"model": "test-model", "received_at": "2025-01-01T00:00:01"},
component_info=ComponentInfo(name="test", type="test"),
finish_reason="stop",
),
]
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
assert result.text == "Hello world"
assert result.reasoning is None
def test_print_streaming_chunk_with_reasoning():
"""Test that print_streaming_chunk handles reasoning content correctly."""
chunk = StreamingChunk(
content="",
meta={"model": "test-model"},
component_info=ComponentInfo(name="test", type="test"),
start=True,
reasoning=ReasoningContent(reasoning_text="I am thinking about this question."),
index=0,
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
expected_calls = [
call("[REASONING]\n", flush=True, end=""),
call("I am thinking about this question.", flush=True, end=""),
]
mock_print.assert_has_calls(expected_calls)
def test_print_streaming_chunk_with_reasoning_continuation():
"""Test that print_streaming_chunk handles reasoning continuation correctly."""
chunk = StreamingChunk(
content="",
meta={"model": "test-model"},
component_info=ComponentInfo(name="test", type="test"),
start=False, # Not the first chunk
reasoning=ReasoningContent(reasoning_text="continued reasoning..."),
index=0,
)
with patch("builtins.print") as mock_print:
print_streaming_chunk(chunk)
# Should only print the reasoning text without the header since it's a continuation
expected_calls = [call("continued reasoning...", flush=True, end="")]
mock_print.assert_has_calls(expected_calls)