mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-02-07 07:22:03 +00:00
* Update documentation and remove unused assets. Enhanced the 'agents' and 'components' sections with clearer descriptions and examples. Removed obsolete images and updated links for better navigation. Adjusted formatting for consistency across various documentation pages. * remove dependency * address comments * delete more empty pages * broken link * unduplicate headings * alphabetical components nav
196 lines
8.6 KiB
Plaintext
196 lines
8.6 KiB
Plaintext
---
|
||
title: "Agent"
|
||
id: agent
|
||
slug: "/agent"
|
||
description: "The `Agent` component is a tool-using agent that interacts with chat-based LLMs and tools to solve complex queries iteratively. It can execute external tools, manage state across multiple LLM calls, and stop execution based on configurable `exit_conditions`."
|
||
---
|
||
|
||
# Agent
|
||
|
||
The `Agent` component is a tool-using agent that interacts with chat-based LLMs and tools to solve complex queries iteratively. It can execute external tools, manage state across multiple LLM calls, and stop execution based on configurable `exit_conditions`.
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| **Most common position in a pipeline** | After a [`ChatPromptBuilder`](../builders/chatpromptbuilder.mdx) or user input |
|
||
| **Mandatory init variables** | `chat_generator`: An instance of a Chat Generator that supports tools |
|
||
| **Mandatory run variables** | `messages`: A list of [`ChatMessage`](../../concepts/data-classes/chatmessage.mdx)s |
|
||
| **Output variables** | `messages`: Chat history with tool and model responses |
|
||
| **API reference** | [Agents](/reference/agents-api) |
|
||
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/agents/agent.py |
|
||
|
||
## Overview
|
||
|
||
The `Agent` component is a loop-based system that uses a chat-based large language model (LLM) and external tools to solve complex user queries. It works iteratively—calling tools, updating state, and generating prompts—until one of the configurable `exit_conditions` is met.
|
||
|
||
It can:
|
||
|
||
- Dynamically select tools based on user input,
|
||
- Maintain and validate runtime state using a schema,
|
||
- Stream token-level outputs from the LLM.
|
||
|
||
The `Agent` returns a dictionary containing:
|
||
|
||
- `messages`: the full conversation history,
|
||
- Additional dynamic keys based on `state_schema`.
|
||
|
||
### Parameters
|
||
|
||
To initialize the `Agent` component, you need to provide it with an instance of a Chat Generator that supports tools. You can pass a list of [tools](../../tools/tool.mdx) or [`ComponentTool`](../../tools/componenttool.mdx) instances, or wrap them in a [`Toolset`](../../tools/toolset.mdx) to manage them as a group.
|
||
|
||
You can additionally configure:
|
||
|
||
- A `system_prompt` for your Agent,
|
||
- A list of `exit_conditions` strings that will cause the agent to return. Can be either:
|
||
- “text”, which means that the Agent will exit as soon as the LLM replies only with a text response,
|
||
- or specific tool names.
|
||
- A `state_schema` for one agent invocation run. It defines extra information – such as documents or context – that tools can read from or write to during execution. You can use this schema to pass parameters that tools can both produce and consume.
|
||
- `streaming_callback` to stream the tokens from the LLM directly in output.
|
||
|
||
:::info
|
||
For a complete list of available parameters, refer to the [Agents API Documentation](/reference/agents-api).
|
||
:::
|
||
|
||
### Streaming
|
||
|
||
You can stream output as it’s generated. Pass a callback to `streaming_callback`. Use the built-in `print_streaming_chunk` to print text tokens and tool events (tool calls and tool results).
|
||
|
||
```python
|
||
from haystack.components.generators.utils import print_streaming_chunk
|
||
|
||
## Configure any `Generator` or `ChatGenerator` with a streaming callback
|
||
component = SomeGeneratorOrChatGenerator(streaming_callback=print_streaming_chunk)
|
||
|
||
## If this is a `ChatGenerator`, pass a list of messages:
|
||
## from haystack.dataclasses import ChatMessage
|
||
## component.run([ChatMessage.from_user("Your question here")])
|
||
|
||
## If this is a (non-chat) `Generator`, pass a prompt:
|
||
## component.run({"prompt": "Your prompt here"})
|
||
```
|
||
|
||
:::info
|
||
Streaming works only with a single response. If a provider supports multiple candidates, set `n=1`.
|
||
:::
|
||
|
||
See our [Streaming Support](../generators/guides-to-generators/choosing-the-right-generator.mdx#streaming-support) docs to learn more how `StreamingChunk` works and how to write a custom callback.
|
||
|
||
Give preference to `print_streaming_chunk` by default. Write a custom callback only if you need a specific transport (for example, SSE/WebSocket) or custom UI formatting.
|
||
|
||
## Usage
|
||
|
||
### On its own
|
||
|
||
```python
|
||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||
from haystack.dataclasses import ChatMessage
|
||
from haystack.tools.tool import Tool
|
||
from haystack.components.agents import Agent
|
||
from typing import List
|
||
|
||
## Tool Function
|
||
def calculate(expression: str) -> dict:
|
||
try:
|
||
result = eval(expression, {"__builtins__": {}})
|
||
return {"result": result}
|
||
except Exception as e:
|
||
return {"error": str(e)}
|
||
|
||
## Tool Definition
|
||
calculator_tool = Tool(
|
||
name="calculator",
|
||
description="Evaluate basic math expressions.",
|
||
parameters={
|
||
"type": "object",
|
||
"properties": {
|
||
"expression": {"type": "string", "description": "Math expression to evaluate"}
|
||
},
|
||
"required": ["expression"]
|
||
},
|
||
function=calculate,
|
||
outputs_to_state={"calc_result": {"source": "result"}}
|
||
)
|
||
|
||
## Agent Setup
|
||
agent = Agent(
|
||
chat_generator=OpenAIChatGenerator(),
|
||
tools=[calculator_tool],
|
||
exit_conditions=["calculator"],
|
||
state_schema={
|
||
"calc_result": {"type": int},
|
||
}
|
||
)
|
||
|
||
## Run the Agent
|
||
agent.warm_up()
|
||
response = agent.run(messages=[ChatMessage.from_user("What is 7 * (4 + 2)?")])
|
||
|
||
## Output
|
||
print(response["messages"])
|
||
print("Calc Result:", response.get("calc_result"))
|
||
```
|
||
|
||
### In a pipeline
|
||
|
||
The example pipeline below creates a database assistant using `OpenAIChatGenerator`, `LinkContentFetcher`, and custom database tool. It reads the given URL and processes the page content, then builds a prompt for the AI. The assistant uses this information to write people's names and titles from the given page to the database.
|
||
|
||
```python
|
||
from haystack.components.agents import Agent
|
||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||
from haystack.components.builders.chat_prompt_builder import ChatPromptBuilder
|
||
from haystack.components.converters.html import HTMLToDocument
|
||
from haystack.components.fetchers.link_content import LinkContentFetcher
|
||
from haystack.core.pipeline import Pipeline
|
||
from haystack.tools import tool
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
from typing import Optional
|
||
from haystack.dataclasses import ChatMessage, Document
|
||
|
||
document_store = InMemoryDocumentStore() # create a document store or an SQL database
|
||
|
||
@tool
|
||
def add_database_tool(name: str, surname: str, job_title: Optional[str], other: Optional[str]):
|
||
"""Use this tool to add names to the database with information about them"""
|
||
document_store.write_documents([Document(content=name + " " + surname + " " + (job_title or ""), meta={"other":other})])
|
||
return
|
||
|
||
database_asistant = Agent(
|
||
chat_generator=OpenAIChatGenerator(model="gpt-4o-mini"),
|
||
tools=[add_database_tool],
|
||
system_prompt="""
|
||
You are a database assistant.
|
||
Your task is to extract the names of people mentioned in the given context and add them to a knowledge base, along with additional relevant information about them that can be extracted from the context.
|
||
Do not use you own knowledge, stay grounded to the given context.
|
||
Do not ask the user for confirmation. Instead, automatically update the knowledge base and return a brief summary of the people added, including the information stored for each.
|
||
""",
|
||
exit_conditions=["text"],
|
||
max_agent_steps=100,
|
||
raise_on_tool_invocation_failure=False
|
||
)
|
||
|
||
extraction_agent = Pipeline()
|
||
extraction_agent.add_component("fetcher", LinkContentFetcher())
|
||
extraction_agent.add_component("converter", HTMLToDocument())
|
||
extraction_agent.add_component("builder", ChatPromptBuilder(
|
||
template=[ChatMessage.from_user("""
|
||
{% for doc in docs %}
|
||
{{ doc.content|default|truncate(25000) }}
|
||
{% endfor %}
|
||
""")],
|
||
required_variables=["docs"]
|
||
))
|
||
|
||
extraction_agent.add_component("database_agent", database_asistant)
|
||
extraction_agent.connect("fetcher.streams", "converter.sources")
|
||
extraction_agent.connect("converter.documents", "builder.docs")
|
||
extraction_agent.connect("builder", "database_agent")
|
||
|
||
agent_output = extraction_agent.run({"fetcher":{"urls":["https://en.wikipedia.org/wiki/Deepset"]}})
|
||
|
||
print(agent_output["database_agent"]["messages"][-1].text)
|
||
```
|
||
|
||
## Additional References
|
||
|
||
🧑🍳 Cookbook: [Build a GitHub Issue Resolver Agent](https://haystack.deepset.ai/cookbook/github_issue_resolver_agent)
|
||
|
||
📓 Tutorial: [Build a Tool-Calling Agent](https://haystack.deepset.ai/tutorials/43_building_a_tool_calling_agent) |