2025-10-27 17:26:17 +01:00

121 lines
5.1 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "CohereDocumentEmbedder"
id: coheredocumentembedder
slug: "/coheredocumentembedder"
description: "This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses Cohere embedding models."
---
# CohereDocumentEmbedder
This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses Cohere embedding models.
The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector that represents the query is compared with those of the documents to find the most similar or relevant documents.
| | |
| --- | --- |
| **Most common position in a pipeline** | Before a [`DocumentWriter`](/docs/pipeline-components/writers/documentwriter.mdx) in an indexing pipeline |
| **Mandatory init variables** | "api_key": The Cohere API key. Can be set with `COHERE_API_KEY` or `CO_API_KEY` env var. |
| **Mandatory run variables** | “documents”: A list of documents to be embedded |
| **Output variables** | “documents”: A list of documents (enriched with embeddings) <br /> <br />“meta”: A dictionary of metadata strings |
| **API reference** | [Cohere](/reference/integrations-cohere) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere |
## Overview
`CohereDocumentEmbedder` enriches the metadata of documents with an embedding of their content. To embed a string, you should use the [`CohereTextEmbedder`](https://docs.haystack.deepset.ai/v2.0/docs/coheretextembedder).
The component supports the following Cohere models:
`"embed-english-v3.0"`, `"embed-english-light-v3.0"`, `"embed-multilingual-v3.0"`,
`"embed-multilingual-light-v3.0"`, `"embed-english-v2.0"`, `"embed-english-light-v2.0"`,
`"embed-multilingual-v2.0"`. The default model is `embed-english-v2.0`. This list of all supported models can be found in Coheres [model documentation](https://docs.cohere.com/docs/models#representation).
To start using this integration with Haystack, install it with:
```shell
pip install cohere-haystack
```
The component uses a `COHERE_API_KEY` or `CO_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key`:
```python
embedder = CohereDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
```
To get a Cohere API key, head over to https://cohere.com/.
### Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this by using the Document Embedder:
```python
from haystack import Document
from cohere_haystack.embedders.document_embedder import CohereDocumentEmbedder
doc = Document(content="some text", meta={"title": "relevant title", "page number": 18})
embedder = CohereDocumentEmbedder(api_key=Secret.from_token("<your-api-key>", meta_fields_to_embed=["title"])
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
```
## Usage
### On its own
Remember to set `COHERE_API_KEY` as an environment variable first, or pass it in directly.
Here is how you can use the component on its own:
```python
from haystack import Document
from haystack_integrations.components.embedders.cohere.document_embedder import CohereDocumentEmbedder
doc = Document(content="I love pizza!")
embedder = CohereDocumentEmbedder()
result = embedder.run([doc])
print(result['documents'][0].embedding)
## [-0.453125, 1.2236328, 2.0058594, 0.67871094...]
```
### In a pipeline
```python
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack_integrations.components.embedders.cohere.document_embedder import CohereDocumentEmbedder
from haystack_integrations.components.embedders.cohere.text_embedder import CohereTextEmbedder
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", CohereDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", CohereTextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
## Document(id=..., text: 'My name is Wolfgang and I live in Berlin')
```