mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-23 05:03:28 +00:00
95 lines
4.5 KiB
Plaintext
95 lines
4.5 KiB
Plaintext
---
|
||
title: "CohereTextEmbedder"
|
||
id: coheretextembedder
|
||
slug: "/coheretextembedder"
|
||
description: "This component transforms a string into a vector that captures its semantics using a Cohere embedding model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents."
|
||
---
|
||
|
||
# CohereTextEmbedder
|
||
|
||
This component transforms a string into a vector that captures its semantics using a Cohere embedding model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents.
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| **Most common position in a pipeline** | Before an embedding [Retriever](/docs/pipeline-components/retrievers.mdx) in a query/RAG pipeline |
|
||
| **Mandatory init variables** | "api_key": The Cohere API key. Can be set with `COHERE_API_KEY` or `CO_API_KEY` env var. |
|
||
| **Mandatory run variables** | “text”: A string |
|
||
| **Output variables** | “embedding”: A list of float numbers (vectors) <br /> <br />“meta”: A dictionary of metadata strings |
|
||
| **API reference** | [Cohere](/reference/integrations-cohere) |
|
||
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere |
|
||
|
||
## Overview
|
||
|
||
`CohereTextEmbedder` embeds a simple string (such as a query) into a vector. For embedding lists of documents, use the use the [`CohereDocumentEmbedder`](https://docs.haystack.deepset.ai/v2.0/docs/coheredocumentembedder), which enriches the document with the computed embedding, also known as vector.
|
||
|
||
The component supports the following Cohere models:
|
||
`"embed-english-v3.0"`, `"embed-english-light-v3.0"`, `"embed-multilingual-v3.0"`,
|
||
`"embed-multilingual-light-v3.0"`, `"embed-english-v2.0"`, `"embed-english-light-v2.0"`,
|
||
`"embed-multilingual-v2.0"`. The default model is `embed-english-v2.0`. This list of all supported models can be found in Cohere’s [model documentation](https://docs.cohere.com/docs/models#representation).
|
||
|
||
To start using this integration with Haystack, install it with:
|
||
|
||
```shell
|
||
pip install cohere-haystack
|
||
```
|
||
|
||
The component uses a `COHERE_API_KEY` or `CO_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with a [Secret](../../concepts/secret-management.mdx) and `Secret.from_token` static method:
|
||
|
||
```python
|
||
embedder = CohereTextEmbedder(api_key=Secret.from_token("<your-api-key>"))
|
||
```
|
||
|
||
To get a Cohere API key, head over to https://cohere.com/.
|
||
|
||
## Usage
|
||
|
||
### On its own
|
||
|
||
Here is how you can use the component on its own. You’ll need to pass in your Cohere API key via Secret or set it as an environment variable called `COHERE_API_KEY`. The examples below assume you've set the environment variable.
|
||
|
||
```python
|
||
from haystack_integrations.components.embedders.cohere.text_embedder import CohereTextEmbedder
|
||
|
||
text_to_embed = "I love pizza!"
|
||
|
||
text_embedder = CohereTextEmbedder()
|
||
|
||
print(text_embedder.run(text_to_embed))
|
||
## {'embedding': [-0.453125, 1.2236328, 2.0058594, 0.67871094...],
|
||
## 'meta': {'api_version': {'version': '1'}, 'billed_units': {'input_tokens': 4}}}
|
||
```
|
||
|
||
### In a pipeline
|
||
|
||
```python
|
||
from haystack import Document
|
||
from haystack import Pipeline
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
from haystack_integrations.components.embedders.cohere.text_embedder import CohereTextEmbedder
|
||
from haystack_integrations.components.embedders.cohere.document_embedder import CohereDocumentEmbedder
|
||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
||
|
||
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
|
||
|
||
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
|
||
Document(content="I saw a black horse running"),
|
||
Document(content="Germany has many big cities")]
|
||
|
||
document_embedder = CohereDocumentEmbedder()
|
||
documents_with_embeddings = document_embedder.run(documents)['documents']
|
||
document_store.write_documents(documents_with_embeddings)
|
||
|
||
query_pipeline = Pipeline()
|
||
query_pipeline.add_component("text_embedder", CohereTextEmbedder())
|
||
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
|
||
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
||
|
||
query = "Who lives in Berlin?"
|
||
|
||
result = query_pipeline.run({"text_embedder":{"text": query}})
|
||
|
||
print(result['retriever']['documents'][0])
|
||
|
||
## Document(id=..., content: 'My name is Wolfgang and I live in Berlin')
|
||
```
|