Daria Fokina 90894491cf
docs: add v2.20 docs pages and plugin for relative links (#9926)
* Update documentation and remove unused assets. Enhanced the 'agents' and 'components' sections with clearer descriptions and examples. Removed obsolete images and updated links for better navigation. Adjusted formatting for consistency across various documentation pages.

* remove dependency

* address comments

* delete more empty pages

* broken link

* unduplicate headings

* alphabetical components nav
2025-10-24 09:52:57 +02:00

106 lines
4.6 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "OpenRouterChatGenerator"
id: openrouterchatgenerator
slug: "/openrouterchatgenerator"
description: "This component enables chat completion with any model hosted on [OpenRouter](https://openrouter.ai/)."
---
# OpenRouterChatGenerator
This component enables chat completion with any model hosted on [OpenRouter](https://openrouter.ai/).
| | |
| --- | --- |
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
| **Mandatory init variables** | “api_key”: An OpenRouter API key. Can be set with `OPENROUTER_API_KEY` env variable or passed to `init()` method. |
| **Mandatory run variables** | “messages:” A list of [ChatMessage](../../concepts/data-classes/chatmessage.mdx) objects |
| **Output variables** | “replies”: A list of [ChatMessage](../../concepts/data-classes/chatmessage.mdx) objects |
| **API reference** | [OpenRouter](/reference/integrations-openrouter) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/openrouter |
## Overview
The `OpenRouterChatGenerator` enables you to use models from multiple providers (such as `openai/gpt-4o`, `anthropic/claude-3.5-sonnet`, and others) by making chat completion calls to the [OpenRouter API](https://openrouter.ai/docs/quickstart).
This generator also supports OpenRouter-specific features such as:
- Provider routing and model fallback that are configurable with the `generation_kwargs` parameter during initialization or runtime.
- Custom HTTP headers that can be supplied using the `extra_headers` parameter.
This component uses the same `ChatMessage` format as other Haystack Chat Generators for structured input and output. For more information, see the [ChatMessage documentation](../../concepts/data-classes/chatmessage.mdx).
It is also fully compatible with Haystack [Tools](../../tools/tool.mdx) and [Toolsets](../../tools/toolset.mdx) that allow function-calling capabilities with supported models.
### Initialization
To use this integration, you must have an active OpenRouter subscription with sufficient credits and an API key. You can provide it with the `OPENROUTER_API_KEY` environment variable or by using a [Secret](../../concepts/secret-management.mdx).
Then, install the `openrouter-haystack` integration:
```shell
pip install openrouter-haystack
```
### Streaming
`OpenRouterChatGenerator` supports [streaming](guides-to-generators/choosing-the-right-generator.mdx#streaming-support) responses from the LLM, allowing tokens to be emitted as they are generated. To enable streaming, pass a callable to the `streaming_callback` parameter during initialization.
## Usage
### On its own
```python
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.openrouter import OpenRouterChatGenerator
client = OpenRouterChatGenerator()
response = client.run(
[ChatMessage.from_user("What are Agentic Pipelines? Be brief.")]
)
print(response["replies"][0].text)
```
With streaming and model routing:
```python
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.openrouter import OpenRouterChatGenerator
client = OpenRouterChatGenerator(model="openrouter/auto",
streaming_callback=lambda chunk: print(chunk.content, end="", flush=True))
response = client.run(
[ChatMessage.from_user("What are Agentic Pipelines? Be brief.")]
)
## check the model used for the response
print("\n\n Model used: ", response["replies"][0].meta["model"])
```
### In a pipeline
```python
from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.openrouter import OpenRouterChatGenerator
prompt_builder = ChatPromptBuilder()
llm = OpenRouterChatGenerator(model="openai/gpt-4o-mini")
pipe = Pipeline()
pipe.add_component("builder", prompt_builder)
pipe.add_component("llm", llm)
pipe.connect("builder.prompt", "llm.messages")
messages = [
ChatMessage.from_system("Give brief answers."),
ChatMessage.from_user("Tell me about {{city}}")
]
response = pipe.run(
data={"builder": {"template": messages,
"template_variables": {"city": "Berlin"}}}
)
print(response)
```