Daria Fokina 3e81ec75dc
docs: add 2.18 and 2.19 actual documentation pages (#9946)
* versioned-docs

* external-documentstores
2025-10-27 13:03:22 +01:00

141 lines
5.9 KiB
Plaintext

---
title: "FastembedSparseTextEmbedder"
id: fastembedsparsetextembedder
slug: "/fastembedsparsetextembedder"
description: "Use this component to embed a simple string (such as a query) into a sparse vector."
---
# FastembedSparseTextEmbedder
Use this component to embed a simple string (such as a query) into a sparse vector.
| | |
| :------------------------------------- | :------------------------------------------------------------------------------------------ |
| **Most common position in a pipeline** | Before a sparse embedding [Retriever](../retrievers.mdx) in a query/RAG pipeline |
| **Mandatory run variables** | “text”: A string |
| **Output variables** | “sparse_embedding”: A [`SparseEmbedding`](/docs/data-classes#sparseembedding) object |
| **API reference** | [FastEmbed](/reference/fastembed-embedders) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/fastembed |
For embedding lists of documents, use the [`FastembedSparseDocumentEmbedder`](/docs/fastembedsparsedocumentembedder), which enriches the document with the computed sparse embedding.
## Overview
`FastembedSparseTextEmbedder` transforms a string into a sparse vector using sparse embedding [models](https://qdrant.github.io/fastembed/examples/Supported_Models/#supported-sparse-text-embedding-models) supported by FastEmbed.
When you perform sparse embedding retrieval, use this component first to transform your query into a sparse vector. Then, the sparse embedding Retriever will use the vector to search for similar or relevant documents.
### Compatible Models
You can find the supported models in the [FastEmbed documentation](https://qdrant.github.io/fastembed/examples/Supported_Models/#supported-sparse-text-embedding-models).
Currently, supported models are based on SPLADE, a technique for producing sparse representations for text, where each non-zero value in the embedding is the importance weight of a term in the BERT WordPiece vocabulary. For more information, see [our docs](../retrievers.mdx#sparse-embedding-based-retrievers) that explain sparse embedding-based Retrievers further.
### Installation
To start using this integration with Haystack, install the package with:
```shell
pip install fastembed-haystack
```
### Parameters
You can set the path where the model will be stored in a cache directory. Also, you can set the number of threads a single `onnxruntime` session can use:
```python
cache_dir= "/your_cacheDirectory"
embedder = FastembedSparseTextEmbedder(
model="prithivida/Splade_PP_en_v1",
cache_dir=cache_dir,
threads=2
)
```
If you want to use the data parallel encoding, you can set the `parallel` parameter.
- If `parallel` > 1, data-parallel encoding will be used. This is recommended for offline encoding of large datasets.
- If `parallel` is 0, use all available cores.
- If None, don't use data-parallel processing; use the default `onnxruntime` threading instead.
:::tip
If you create both a Sparse Text Embedder and a Sparse Document Embedder based on the same model, Haystack utilizes a shared resource behind the scenes to conserve resources.
:::
## Usage
### On its own
```python
from haystack_integrations.components.embedders.fastembed import FastembedSparseTextEmbedder
text = """It clearly says online this will work on a Mac OS system.
The disk comes and it does not, only Windows.
Do Not order this if you have a Mac!!"""
text_embedder = FastembedSparseTextEmbedder(model="prithivida/Splade_PP_en_v1")
text_embedder.warm_up()
sparse_embedding = text_embedder.run(text)["sparse_embedding"]
```
### In a pipeline
Currently, sparse embedding retrieval is only supported by `QdrantDocumentStore`.
First, install the package with:
```shell
pip install qdrant-haystack
```
Then, try out this pipeline:
```python
from haystack import Document, Pipeline
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack_integrations.components.retrievers.qdrant import QdrantSparseEmbeddingRetriever
from haystack_integrations.components.embedders.fastembed import FastembedSparseTextEmbedder, FastembedSparseDocumentEmbedder, FastembedTextEmbedder
document_store = QdrantDocumentStore(
":memory:",
recreate_index=True,
use_sparse_embeddings=True
)
documents = [
Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities"),
Document(content="fastembed is supported by and maintained by Qdrant."),
]
sparse_document_embedder = FastembedSparseDocumentEmbedder(
model="prithivida/Splade_PP_en_v1"
)
sparse_document_embedder.warm_up()
documents_with_sparse_embeddings = sparse_document_embedder.run(documents)["documents"]
document_store.write_documents(documents_with_sparse_embeddings)
query_pipeline = Pipeline()
query_pipeline.add_component("sparse_text_embedder", FastembedSparseTextEmbedder())
query_pipeline.add_component("sparse_retriever", QdrantSparseEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("sparse_text_embedder.sparse_embedding",
"sparse_retriever.query_sparse_embedding")
query = "Who supports fastembed?"
result = query_pipeline.run({"sparse_text_embedder": {"text": query}})
print(result["sparse_retriever"]["documents"][0]) # noqa: T201
## Document(id=...,
## content: 'fastembed is supported by and maintained by Qdrant.',
## score: 0.561..)
```
## Additional References
:cook: Cookbook: [Sparse Embedding Retrieval with Qdrant and FastEmbed](https://haystack.deepset.ai/cookbook/sparse_embedding_retrieval)