Daria Fokina 3e81ec75dc
docs: add 2.18 and 2.19 actual documentation pages (#9946)
* versioned-docs

* external-documentstores
2025-10-27 13:03:22 +01:00

104 lines
4.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "JinaTextEmbedder"
id: jinatextembedder
slug: "/jinatextembedder"
description: "This component transforms a string into a vector that captures its semantics using a Jina Embeddings model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents."
---
# JinaTextEmbedder
This component transforms a string into a vector that captures its semantics using a Jina Embeddings model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents.
| | |
| --- | --- |
| **Most common position in a pipeline** | Before an embedding [Retriever](../retrievers.mdx) in a query/RAG pipeline |
| **Mandatory init variables** | "api_key": The Jina API key. Can be set with `JINA_API_KEY` env var. |
| **Mandatory run variables** | “text”: A string |
| **Output variables** | “embedding”: A list of float numbers <br /> <br />”meta”: A dictionary of metadata |
| **API reference** | [Jina](/reference/integrations-jina) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/jina |
## Overview
`JinaTextEmbedder` embeds a simple string (such as a query) into a vector. For embedding lists of documents, use the use the [`JinaDocumentEmbedder`](jinadocumentembedder.mdx), which enriches the document with the computed embedding, also known as vector. To see the list of compatible Jina Embeddings models, head to Jina AIs [website](https://jina.ai/embeddings/). The default model for `JinaTextEmbedder` is `jina-embeddings-v2-base-en`.
To start using this integration with Haystack, install the package with:
```shell
pip install jina-haystack
```
The component uses a `JINA_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key`:
```python
embedder = JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>"))
```
To get a Jina Embeddings API key, head to https://jina.ai/embeddings/.
## Usage
### On its own
Here is how you can use the component on its own:
```python
from haystack_integrations.components.embedders.jina import JinaTextEmbedder
text_to_embed = "I love pizza!"
text_embedder = JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>"))
print(text_embedder.run(text_to_embed))
## {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
## 'meta': {'model': 'text-embedding-ada-002-v2',
## 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}
```
:::note
We recommend setting JINA_API_KEY as an environment variable instead of setting it as a parameter.
:::
### In a pipeline
```python
from haystack import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
from haystack_integrations.components.embedders.jina import JinaTextEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
document_embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
documents_with_embeddings = document_embedder.run(documents)['documents']
document_store.write_documents(documents_with_embeddings)
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>")))
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
## Document(id=..., mimetype: 'text/plain',
## text: 'My name is Wolfgang and I live in Berlin')
```
## Additional References
:cook: Cookbook: [Using the Jina-embeddings-v2-base-en model in a Haystack RAG pipeline for legal document analysis](https://haystack.deepset.ai/cookbook/jina-embeddings-v2-legal-analysis-rag)