mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-02-01 12:33:09 +00:00
104 lines
4.3 KiB
Plaintext
104 lines
4.3 KiB
Plaintext
---
|
||
title: "JinaTextEmbedder"
|
||
id: jinatextembedder
|
||
slug: "/jinatextembedder"
|
||
description: "This component transforms a string into a vector that captures its semantics using a Jina Embeddings model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents."
|
||
---
|
||
|
||
# JinaTextEmbedder
|
||
|
||
This component transforms a string into a vector that captures its semantics using a Jina Embeddings model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents.
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| **Most common position in a pipeline** | Before an embedding [Retriever](../retrievers.mdx) in a query/RAG pipeline |
|
||
| **Mandatory init variables** | "api_key": The Jina API key. Can be set with `JINA_API_KEY` env var. |
|
||
| **Mandatory run variables** | “text”: A string |
|
||
| **Output variables** | “embedding”: A list of float numbers <br /> <br />”meta”: A dictionary of metadata |
|
||
| **API reference** | [Jina](/reference/integrations-jina) |
|
||
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/jina |
|
||
|
||
## Overview
|
||
|
||
`JinaTextEmbedder` embeds a simple string (such as a query) into a vector. For embedding lists of documents, use the use the [`JinaDocumentEmbedder`](jinadocumentembedder.mdx), which enriches the document with the computed embedding, also known as vector. To see the list of compatible Jina Embeddings models, head to Jina AI’s [website](https://jina.ai/embeddings/). The default model for `JinaTextEmbedder` is `jina-embeddings-v2-base-en`.
|
||
|
||
To start using this integration with Haystack, install the package with:
|
||
|
||
```shell
|
||
pip install jina-haystack
|
||
```
|
||
|
||
The component uses a `JINA_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key`:
|
||
|
||
```python
|
||
embedder = JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>"))
|
||
```
|
||
|
||
To get a Jina Embeddings API key, head to https://jina.ai/embeddings/.
|
||
|
||
## Usage
|
||
|
||
### On its own
|
||
|
||
Here is how you can use the component on its own:
|
||
|
||
```python
|
||
from haystack_integrations.components.embedders.jina import JinaTextEmbedder
|
||
|
||
text_to_embed = "I love pizza!"
|
||
|
||
text_embedder = JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>"))
|
||
|
||
print(text_embedder.run(text_to_embed))
|
||
|
||
## {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
|
||
## 'meta': {'model': 'text-embedding-ada-002-v2',
|
||
## 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}
|
||
|
||
```
|
||
|
||
:::note
|
||
We recommend setting JINA_API_KEY as an environment variable instead of setting it as a parameter.
|
||
|
||
:::
|
||
|
||
### In a pipeline
|
||
|
||
```python
|
||
from haystack import Document
|
||
from haystack import Pipeline
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
|
||
from haystack_integrations.components.embedders.jina import JinaTextEmbedder
|
||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
||
|
||
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
|
||
|
||
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
|
||
Document(content="I saw a black horse running"),
|
||
Document(content="Germany has many big cities")]
|
||
|
||
document_embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
|
||
documents_with_embeddings = document_embedder.run(documents)['documents']
|
||
document_store.write_documents(documents_with_embeddings)
|
||
|
||
query_pipeline = Pipeline()
|
||
query_pipeline.add_component("text_embedder", JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>")))
|
||
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
|
||
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
||
|
||
query = "Who lives in Berlin?"
|
||
|
||
result = query_pipeline.run({"text_embedder":{"text": query}})
|
||
|
||
print(result['retriever']['documents'][0])
|
||
|
||
## Document(id=..., mimetype: 'text/plain',
|
||
## text: 'My name is Wolfgang and I live in Berlin')
|
||
|
||
```
|
||
|
||
## Additional References
|
||
|
||
:cook: Cookbook: [Using the Jina-embeddings-v2-base-en model in a Haystack RAG pipeline for legal document analysis](https://haystack.deepset.ai/cookbook/jina-embeddings-v2-legal-analysis-rag)
|