mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-02-06 15:02:30 +00:00
81 lines
3.6 KiB
Plaintext
81 lines
3.6 KiB
Plaintext
---
|
|
title: "CohereChatGenerator"
|
|
id: coherechatgenerator
|
|
slug: "/coherechatgenerator"
|
|
description: "CohereChatGenerator enables chat completions using Cohere's large language models (LLMs)."
|
|
---
|
|
|
|
# CohereChatGenerator
|
|
|
|
CohereChatGenerator enables chat completions using Cohere's large language models (LLMs).
|
|
|
|
| | |
|
|
| --- | --- |
|
|
| **Most common position in a pipeline** | After a [ChatPromptBuilder](../builders/chatpromptbuilder.mdx) |
|
|
| **Mandatory init variables** | "api_key": The Cohere API key. Can be set with `COHERE_API_KEY` or `CO_API_KEY` env var. |
|
|
| **Mandatory run variables** | “messages” A list of [`ChatMessage`](/docs/data-classes#chatmessage) objects |
|
|
| **Output variables** | "replies": A list of [`ChatMessage`](/docs/data-classes#chatmessage) objects <br /> <br />”meta”: A list of dictionaries with the metadata associated with each reply, such as token count, finish reason, and so on |
|
|
| **API reference** | [Cohere](/reference/integrations-cohere) |
|
|
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere |
|
|
|
|
This integration supports Cohere `chat` models such as `command`,`command-r` and `comman-r-plus`. Check out the most recent full list in [Cohere documentation](https://docs.cohere.com/reference/chat).
|
|
|
|
## Overview
|
|
|
|
`CohereChatGenerator` needs a Cohere API key to work. You can set this key in:
|
|
|
|
- The `api_key` init parameter using [Secret API](/docs/secret-management)
|
|
- The `COHERE_API_KEY` environment variable (recommended)
|
|
|
|
Then, the component needs a prompt to operate, but you can pass any text generation parameters valid for the `Co.chat` method directly to this component using the `generation_kwargs` parameter, both at initialization and to `run()` method. For more details on the parameters supported by the Cohere API, refer to the [Cohere documentation](https://docs.cohere.com/reference/chat).
|
|
|
|
Finally, the component needs a list of `ChatMessage` objects to operate. `ChatMessage` is a data class that contains a message, a role (who generated the message, such as `user`, `assistant`, `system`, `function`), and optional metadata.
|
|
|
|
### Streaming
|
|
|
|
This Generator supports [streaming](/docs/choosing-the-right-generator#streaming-support) the tokens from the LLM directly in output. To do so, pass a function to the `streaming_callback` init parameter.
|
|
|
|
## Usage
|
|
|
|
You need to install `cohere-haystack` package to use the `CohereChatGenerator`:
|
|
|
|
```shell
|
|
pip install cohere-haystack
|
|
```
|
|
|
|
#### On its own
|
|
|
|
```python
|
|
from haystack_integrations.components.generators.cohere import CohereChatGenerator
|
|
from haystack.dataclasses import ChatMessage
|
|
|
|
generator = CohereChatGenerator()
|
|
message = ChatMessage.from_user("What's Natural Language Processing? Be brief.")
|
|
print(generator.run([message]))
|
|
```
|
|
|
|
#### In a Pipeline
|
|
|
|
You can also use `CohereChatGenerator` to use cohere chat models in your pipeline.
|
|
|
|
```python
|
|
from haystack import Pipeline
|
|
from haystack.components.builders import ChatPromptBuilder
|
|
from haystack.dataclasses import ChatMessage
|
|
from haystack_integrations.components.generators.cohere import CohereChatGenerator
|
|
from haystack.utils import Secret
|
|
|
|
pipe = Pipeline()
|
|
pipe.add_component("prompt_builder", ChatPromptBuilder())
|
|
pipe.add_component("llm", CohereChatGenerator())
|
|
pipe.connect("prompt_builder", "llm")
|
|
|
|
country = "Germany"
|
|
system_message = ChatMessage.from_system("You are an assistant giving out valuable information to language learners.")
|
|
messages = [system_message, ChatMessage.from_user("What's the official language of {{ country }}?")]
|
|
|
|
res = pipe.run(data={"prompt_builder": {"template_variables": {"country": country}, "template": messages}})
|
|
print(res)
|
|
|
|
```
|