Daria Fokina 3e81ec75dc
docs: add 2.18 and 2.19 actual documentation pages (#9946)
* versioned-docs

* external-documentstores
2025-10-27 13:03:22 +01:00

182 lines
7.5 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "ToolInvoker"
id: toolinvoker
slug: "/toolinvoker"
description: "This component is designed to execute tool calls prepared by language models. It acts as a bridge between the language model's output and the actual execution of functions or tools that perform specific tasks."
---
# ToolInvoker
This component is designed to execute tool calls prepared by language models. It acts as a bridge between the language model's output and the actual execution of functions or tools that perform specific tasks.
| | |
| -------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| **Most common position in a pipeline** | After a Chat Generator |
| **Mandatory init variables** | “tools”: A list of [`Tools`](../../tools/tool.mdx) that can be invoked |
| **Mandatory run variables** | “messages”: A list of [`ChatMessage`](/docs/chatmessage) objects from a Chat Generator containing tool calls |
| **Output variables** | “tool_messages”: A list of `ChatMessage` objects with tool role. Each `ChatMessage` objects wraps the result of a tool invocation. |
| **API reference** | [Tools](/reference/tools-api) |
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/components/tools/tool_invoker.py |
## Overview
A `ToolInvoker` is a component that processes `ChatMessage` objects containing tool calls. It invokes the corresponding tools and returns the results as a list of `ChatMessage` objects. Each tool is defined with a name, description, parameters, and a function that performs the task. The `ToolInvoker` manages these tools and handles the invocation process.
You can pass multiple tools to the `ToolInvoker` component, and it will automatically choose the right tool to call based on tool calls produced by a Language Model.
The `ToolInvoker` has two additionally helpful parameters:
- `convert_result_to_json_string`: Use `json.dumps` (when True) or `str` (when False) to convert the result into a string.
- `raise_on_failure`: If True, it will raise an exception in case of errors. If False, it will return a `ChatMessage` object with `error=True` and a description of the error in `result`. Use this, for example, when you want to keep the Language Model running in a loop and fixing its errors.
:::note
ChatMessage and Tool Data Classes
Follow the links to learn more about [ChatMessage](doc:chatmessage) and [Tool](../../tools/tool.mdx) data classes.
:::
## Usage
### On its own
```python
from haystack.dataclasses import ChatMessage, ToolCall
from haystack.components.tools import ToolInvoker
from haystack.tools import Tool
## Tool definition
def dummy_weather_function(city: str):
return f"The weather in {city} is 20 degrees."
parameters = {"type": "object",
"properties": {"city": {"type": "string"}},
"required": ["city"]}
tool = Tool(name="weather_tool",
description="A tool to get the weather",
function=dummy_weather_function,
parameters=parameters)
## Usually, the ChatMessage with tool_calls is generated by a Language Model
## Here, we create it manually for demonstration purposes
tool_call = ToolCall(
tool_name="weather_tool",
arguments={"city": "Berlin"}
)
message = ChatMessage.from_assistant(tool_calls=[tool_call])
## ToolInvoker initialization and run
invoker = ToolInvoker(tools=[tool])
result = invoker.run(messages=[message])
print(result)
```
```
```
### In a pipeline
The following code snippet shows how to process a user query about the weather. First, we define a `Tool` for fetching weather data, then we initialize a `ToolInvoker` to execute this tool, while using an `OpenAIChatGenerator` to generate responses. A `ConditionalRouter` is used in this pipeline to route messages based on whether they contain tool calls. The pipeline connects these components, processes a user message asking for the weather in Berlin, and outputs the result.
```python
from haystack.dataclasses import ChatMessage
from haystack.components.tools import ToolInvoker
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.routers import ConditionalRouter
from haystack.tools import Tool
from haystack import Pipeline
from typing import List # Ensure List is imported
## Define a dummy weather tool
import random
def dummy_weather(location: str):
return {"temp": f"{random.randint(-10, 40)} °C",
"humidity": f"{random.randint(0, 100)}%"}
weather_tool = Tool(
name="weather",
description="A tool to get the weather",
function=dummy_weather,
parameters={
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"],
},
)
## Initialize the ToolInvoker with the weather tool
tool_invoker = ToolInvoker(tools=[weather_tool])
## Initialize the ChatGenerator
chat_generator = OpenAIChatGenerator(model="gpt-4o-mini", tools=[weather_tool])
## Define routing conditions
routes = [
{
"condition": "{{replies[0].tool_calls | length > 0}}",
"output": "{{replies}}",
"output_name": "there_are_tool_calls",
"output_type": List[ChatMessage], # Use direct type
},
{
"condition": "{{replies[0].tool_calls | length == 0}}",
"output": "{{replies}}",
"output_name": "final_replies",
"output_type": List[ChatMessage], # Use direct type
},
]
## Initialize the ConditionalRouter
router = ConditionalRouter(routes, unsafe=True)
## Create the pipeline
pipeline = Pipeline()
pipeline.add_component("generator", chat_generator)
pipeline.add_component("router", router)
pipeline.add_component("tool_invoker", tool_invoker)
## Connect components
pipeline.connect("generator.replies", "router")
pipeline.connect("router.there_are_tool_calls", "tool_invoker.messages") # Correct connection
## Example user message
user_message = ChatMessage.from_user("What is the weather in Berlin?")
## Run the pipeline
result = pipeline.run({"messages": [user_message]})
## Print the result
print(result)
```
```
{
"tool_invoker":{
"tool_messages":[
"ChatMessage(_role=<ChatRole.TOOL":"tool"">",
"_content="[
"ToolCallResult(result=""{'temp': '33 °C', 'humidity': '79%'}",
"origin=ToolCall(tool_name=""weather",
"arguments="{
"location":"Berlin"
},
"id=""call_pUVl8Cycssk1dtgMWNT1T9eT"")",
"error=False)"
],
"_name=None",
"_meta="{
}")"
]
}
}
```
## Additional References
🧑‍🍳 Cookbooks:
- [Define & Run Tools](https://haystack.deepset.ai/cookbook/tools_support)
- [Newsletter Sending Agent with Haystack Tools](https://haystack.deepset.ai/cookbook/newsletter-agent)
- [Create a Swarm of Agents](https://haystack.deepset.ai/cookbook/swarm)