haystack/test/test_document_classifier.py
bogdankostic 738e008020
Add run_batch method to all nodes and Pipeline to allow batch querying (#2481)
* Add run_batch methods for batch querying

* Update Documentation & Code Style

* Fix mypy

* Update Documentation & Code Style

* Fix mypy

* Fix linter

* Fix tests

* Update Documentation & Code Style

* Fix tests

* Update Documentation & Code Style

* Fix mypy

* Fix rest api test

* Update Documentation & Code Style

* Add Doc strings

* Update Documentation & Code Style

* Add batch_size as attribute to nodes supporting batching

* Adapt error messages

* Adapt type of filters in retrievers

* Revert change about truncation_warning in summarizer

* Unify multiple_doc_lists tests

* Use smaller models in extractor tests

* Add return types to JoinAnswers and RouteDocuments

* Adapt return statements in reader's run_batch method

* Allow list of filters

* Adapt error messages

* Update Documentation & Code Style

* Fix tests

* Fix mypy

* Adapt print_questions

* Remove disabling warning about too many public methods

* Add flag for pylint to disable warning about too many public methods in pipelines/base.py and document_stores/base.py

* Add type check

* Update Documentation & Code Style

* Adapt tutorial 11

* Update Documentation & Code Style

* Add query_batch method for DCDocStore

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-05-11 11:11:00 +02:00

121 lines
4.6 KiB
Python

import pytest
from haystack.schema import Document
from haystack.nodes.document_classifier.base import BaseDocumentClassifier
@pytest.mark.slow
def test_document_classifier(document_classifier):
assert isinstance(document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = document_classifier.predict(documents=docs)
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.slow
def test_document_classifier_batch_single_doc_list(document_classifier):
docs = [
Document(content="""That's good. I like it.""", meta={"name": "0"}, id="1"),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = document_classifier.predict_batch(documents=docs)
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.slow
def test_document_classifier_batch_multiple_doc_lists(document_classifier):
docs = [
Document(content="""That's good. I like it.""", meta={"name": "0"}, id="1"),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = document_classifier.predict_batch(documents=[docs, docs])
assert len(results) == 2 # 2 Document lists
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results[0]):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.slow
def test_zero_shot_document_classifier(zero_shot_document_classifier):
assert isinstance(zero_shot_document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = zero_shot_document_classifier.predict(documents=docs)
expected_labels = ["positive", "negative"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.slow
def test_document_classifier_batch_size(batched_document_classifier):
assert isinstance(batched_document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = batched_document_classifier.predict(documents=docs)
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.slow
def test_document_classifier_as_index_node(indexing_document_classifier):
assert isinstance(indexing_document_classifier, BaseDocumentClassifier)
docs = [
{
"content": """That's good. I like it.""" * 700, # extra long text to check truncation
"meta": {"name": "0"},
"id": "1",
"class_field": "That's bad.",
},
{"content": """That's bad. I like it.""", "meta": {"name": "1"}, "id": "2", "class_field": "That's good."},
]
output, output_name = indexing_document_classifier.run(documents=docs, root_node="File")
expected_labels = ["sadness", "joy"]
for i, doc in enumerate(output["documents"]):
assert doc["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.slow
def test_document_classifier_as_query_node(document_classifier):
assert isinstance(document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
output, output_name = document_classifier.run(documents=docs, root_node="Query")
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(output["documents"]):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]