haystack/haystack/environment.py
Julian Risch 30fdf2b5df
feat!: Add extra for inference dependencies such as torch (#5147)
* feat!: add extra for inference dependencies such as torch

* add inference extra to 'all' and 'all-gpu' extra

* install inference extra in selected integration tests

* import LazyImport

* review feedback

* add import error messages and update readme

* remove extra dot
2023-06-20 09:54:10 +02:00

128 lines
4.5 KiB
Python

# pylint: disable=global-statement
import logging
import os
import platform
import sys
from typing import Any, Dict, Optional
from haystack import __version__
from haystack.lazy_imports import LazyImport
with LazyImport(message="Run 'pip install farm-haystack[inference]'") as torch_import:
import torch
with LazyImport() as transformers_import:
import transformers
# Any remote API (OpenAI, Cohere etc.)
HAYSTACK_REMOTE_API_BACKOFF_SEC = "HAYSTACK_REMOTE_API_BACKOFF_SEC"
HAYSTACK_REMOTE_API_MAX_RETRIES = "HAYSTACK_REMOTE_API_MAX_RETRIES"
HAYSTACK_REMOTE_API_TIMEOUT_SEC = "HAYSTACK_REMOTE_API_TIMEOUT_SEC"
HAYSTACK_PROMPT_TEMPLATE_ALLOWED_FUNCTIONS = "HAYSTACK_PROMPT_TEMPLATE_ALLOWED_FUNCTIONS"
logger = logging.getLogger(__name__)
# IS_DOCKER cache copy
IS_DOCKER_CACHE = None
def set_pytorch_secure_model_loading(flag_val="1"):
# To load secure only model pytorch requires value of
# TORCH_FORCE_WEIGHTS_ONLY_LOAD to be ["1", "y", "yes", "true"]
os_flag_val = os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD")
if os_flag_val is None:
os.environ["TORCH_FORCE_WEIGHTS_ONLY_LOAD"] = flag_val
else:
logger.info("TORCH_FORCE_WEIGHTS_ONLY_LOAD is already set to %s, Haystack will use the same.", os_flag_val)
def in_podman() -> bool:
"""
Podman run would create the file /run/.containernv, see:
https://github.com/containers/podman/blob/main/docs/source/markdown/podman-run.1.md.in#L31
"""
return os.path.exists("/run/.containerenv")
def has_dockerenv() -> bool:
"""
This might not work anymore at some point (even if it's been a while now), see:
https://github.com/moby/moby/issues/18355#issuecomment-220484748
"""
return os.path.exists("/.dockerenv")
def has_docker_cgroup_v1() -> bool:
"""
This only works with cgroups v1
"""
path = "/proc/self/cgroup" # 'self' should be always symlinked to the actual PID
return os.path.isfile(path) and any("docker" in line for line in open(path))
def has_docker_cgroup_v2() -> bool:
"""
cgroups v2 version, inspired from
https://github.com/jenkinsci/docker-workflow-plugin/blob/master/src/main/java/org/jenkinsci/plugins/docker/workflow/client/DockerClient.java
"""
path = "/proc/self/mountinfo" # 'self' should be always symlinked to the actual PID
return os.path.isfile(path) and any("/docker/containers/" in line for line in open(path))
def is_containerized() -> Optional[bool]:
"""
This code is based on the popular 'is-docker' package for node.js
"""
global IS_DOCKER_CACHE
if IS_DOCKER_CACHE is None:
IS_DOCKER_CACHE = in_podman() or has_dockerenv() or has_docker_cgroup_v1() or has_docker_cgroup_v2()
return IS_DOCKER_CACHE
def collect_static_system_specs() -> Dict[str, Any]:
"""
Collects meta data about the setup that is used with Haystack, such as:
operating system, python version, Haystack version, transformers version,
pytorch version, number of GPUs, execution environment.
"""
specs = {
"libraries.haystack": __version__,
"os.containerized": is_containerized(),
# FIXME review these
"os.version": platform.release(),
"os.family": platform.system(),
"os.machine": platform.machine(),
"python.version": platform.python_version(), # FIXME verify
"hardware.cpus": os.cpu_count(), # FIXME verify
}
try:
transformers_import.check()
specs["libraries.transformers"] = transformers.__version__
except ImportError:
specs["libraries.transformers"] = False
try:
torch_import.check()
specs.update(
{
"libraries.torch": torch.__version__,
"libraries.cuda": torch.version.cuda if torch.cuda.is_available() else False,
"hardware.gpus": torch.cuda.device_count() if torch.cuda.is_available() else 0,
}
)
except ImportError:
specs.update({"libraries.torch": False, "libraries.cuda": False, "hardware.gpus": 0})
return specs
def collect_dynamic_system_specs() -> Dict[str, Any]:
return {
"libraries.pytest": sys.modules["pytest"].__version__ if "pytest" in sys.modules.keys() else False,
"libraries.ray": sys.modules["ray"].__version__ if "ray" in sys.modules.keys() else False,
"libraries.ipython": sys.modules["ipython"].__version__ if "ipython" in sys.modules.keys() else False,
"libraries.colab": sys.modules["google.colab"].__version__ if "google.colab" in sys.modules.keys() else False,
}