haystack/test/test_table_reader.py
bogdankostic ca988917c9
Fix TableReader for tables without rows (#2369)
* Skip tables without rows

* Update Documentation & Code Style

* Add tests

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-03-30 17:02:39 +02:00

83 lines
3.4 KiB
Python

import logging
import pandas as pd
import pytest
from haystack.schema import Document
from haystack.pipelines.base import Pipeline
def test_table_reader(table_reader):
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "11 november 1974"
assert prediction["answers"][0].offsets_in_context[0].start == 7
assert prediction["answers"][0].offsets_in_context[0].end == 8
def test_table_reader_in_pipeline(table_reader):
pipeline = Pipeline()
pipeline.add_node(table_reader, "TableReader", ["Query"])
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["58", "47", "60"],
"number of movies": ["87", "53", "69"],
"date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
}
table = pd.DataFrame(data)
query = "When was Di Caprio born?"
prediction = pipeline.run(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "11 november 1974"
assert prediction["answers"][0].offsets_in_context[0].start == 7
assert prediction["answers"][0].offsets_in_context[0].end == 8
@pytest.mark.parametrize("table_reader", ["tapas"], indirect=True)
def test_table_reader_aggregation(table_reader):
data = {
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"],
}
table = pd.DataFrame(data)
query = "How tall are all mountains on average?"
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "8609.2 m"
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
query = "How tall are all mountains together?"
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
assert prediction["answers"][0].answer == "43046.0 m"
assert prediction["answers"][0].meta["aggregation_operator"] == "SUM"
assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
def test_table_without_rows(caplog, table_reader):
# empty DataFrame
table = pd.DataFrame()
document = Document(content=table, content_type="table", id="no_rows")
with caplog.at_level(logging.WARNING):
predictions = table_reader.predict(query="test", documents=[document])
assert "Skipping document with id 'no_rows'" in caplog.text
assert len(predictions["answers"]) == 0
def test_text_document(caplog, table_reader):
document = Document(content="text", id="text_doc")
with caplog.at_level(logging.WARNING):
predictions = table_reader.predict(query="test", documents=[document])
assert "Skipping document with id 'text_doc'" in caplog.text
assert len(predictions["answers"]) == 0