haystack/test/test_document_store.py
Sowmiya Jaganathan 04d93ec247
Introduced an arg to add synonyms - Elasticsearch (#1625)
* Introduced an arg add synonyms to Elasticsearch

* Added the test code, removed the whitespace formatting changes, and overwrote the relevant parts from the already existing mapping instead of creating new mapping.

* Added the test code

* Remove whitespace change

* Added the doc_string with examples and link

* Removed unneccessary spaces

* Add latest docstring and tutorial changes

* fix text_field -> content_field

Co-authored-by: sowmiya-emplay <sowmiya.j@emplay.net>
Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-11-23 19:10:34 +01:00

937 lines
40 KiB
Python

import numpy as np
import pandas as pd
import pytest
from elasticsearch import Elasticsearch
from elasticsearch.exceptions import RequestError
from conftest import get_document_store
from haystack.document_stores import WeaviateDocumentStore
from haystack.errors import DuplicateDocumentError
from haystack.schema import Document, Label, Answer, Span
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
from haystack.document_stores.faiss import FAISSDocumentStore
@pytest.mark.elasticsearch
def test_init_elastic_client():
# defaults
_ = ElasticsearchDocumentStore()
# list of hosts + single port
_ = ElasticsearchDocumentStore(host=["localhost", "127.0.0.1"], port=9200)
# list of hosts + list of ports (wrong)
with pytest.raises(Exception):
_ = ElasticsearchDocumentStore(host=["localhost", "127.0.0.1"], port=[9200])
# list of hosts + list
_ = ElasticsearchDocumentStore(host=["localhost", "127.0.0.1"], port=[9200, 9200])
# only api_key
with pytest.raises(Exception):
_ = ElasticsearchDocumentStore(host=["localhost"], port=[9200], api_key="test")
# api_key + id
_ = ElasticsearchDocumentStore(host=["localhost"], port=[9200], api_key="test", api_key_id="test")
def test_write_with_duplicate_doc_ids(document_store):
documents = [
Document(
content="Doc1",
id_hash_keys=["key1"]
),
Document(
content="Doc2",
id_hash_keys=["key1"]
)
]
document_store.write_documents(documents, duplicate_documents="skip")
assert len(document_store.get_all_documents()) == 1
with pytest.raises(Exception):
document_store.write_documents(documents, duplicate_documents="fail")
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus", "weaviate"], indirect=True)
def test_write_with_duplicate_doc_ids_custom_index(document_store):
documents = [
Document(
content="Doc1",
id_hash_keys=["key1"]
),
Document(
content="Doc2",
id_hash_keys=["key1"]
)
]
document_store.delete_documents(index="haystack_custom_test")
document_store.write_documents(documents, index="haystack_custom_test", duplicate_documents="skip")
with pytest.raises(DuplicateDocumentError):
document_store.write_documents(documents, index="haystack_custom_test", duplicate_documents="fail")
# Weaviate manipulates document objects in-place when writing them to an index.
# It generates a uuid based on the provided id and the index name where the document is added to.
# We need to get rid of these generated uuids for this test and therefore reset the document objects.
# As a result, the documents will receive a fresh uuid based on their id_hash_keys and a different index name.
if isinstance(document_store, WeaviateDocumentStore):
documents = [
Document(
content="Doc1",
id_hash_keys=["key1"]
),
Document(
content="Doc2",
id_hash_keys=["key1"]
)
]
# writing to the default, empty index should still work
document_store.write_documents(documents, duplicate_documents="fail")
def test_get_all_documents_without_filters(document_store_with_docs):
documents = document_store_with_docs.get_all_documents()
assert all(isinstance(d, Document) for d in documents)
assert len(documents) == 3
assert {d.meta["name"] for d in documents} == {"filename1", "filename2", "filename3"}
assert {d.meta["meta_field"] for d in documents} == {"test1", "test2", "test3"}
def test_get_all_document_filter_duplicate_text_value(document_store):
documents = [
Document(
content="Doc1",
meta={"f1": "0"},
id_hash_keys=["Doc1", "1"]
),
Document(
content="Doc1",
meta={"f1": "1", "meta_id": "0"},
id_hash_keys=["Doc1", "2"]
),
Document(
content="Doc2",
meta={"f3": "0"},
id_hash_keys=["Doc2", "3"]
)
]
document_store.write_documents(documents)
documents = document_store.get_all_documents(filters={"f1": ["1"]})
assert documents[0].content == "Doc1"
assert len(documents) == 1
assert {d.meta["meta_id"] for d in documents} == {"0"}
def test_get_all_documents_with_correct_filters(document_store_with_docs):
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test2"]})
assert len(documents) == 1
assert documents[0].meta["name"] == "filename2"
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test1", "test3"]})
assert len(documents) == 2
assert {d.meta["name"] for d in documents} == {"filename1", "filename3"}
assert {d.meta["meta_field"] for d in documents} == {"test1", "test3"}
def test_get_all_documents_with_correct_filters_legacy_sqlite(test_docs_xs):
document_store_with_docs = get_document_store("sql")
document_store_with_docs.write_documents(test_docs_xs)
document_store_with_docs.use_windowed_query = False
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test2"]})
assert len(documents) == 1
assert documents[0].meta["name"] == "filename2"
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["test1", "test3"]})
assert len(documents) == 2
assert {d.meta["name"] for d in documents} == {"filename1", "filename3"}
assert {d.meta["meta_field"] for d in documents} == {"test1", "test3"}
def test_get_all_documents_with_incorrect_filter_name(document_store_with_docs):
documents = document_store_with_docs.get_all_documents(filters={"incorrect_meta_field": ["test2"]})
assert len(documents) == 0
def test_get_all_documents_with_incorrect_filter_value(document_store_with_docs):
documents = document_store_with_docs.get_all_documents(filters={"meta_field": ["incorrect_value"]})
assert len(documents) == 0
def test_get_documents_by_id(document_store_with_docs):
documents = document_store_with_docs.get_all_documents()
doc = document_store_with_docs.get_document_by_id(documents[0].id)
assert doc.id == documents[0].id
assert doc.content == documents[0].content
def test_get_document_count(document_store):
documents = [
{"content": "text1", "id": "1", "meta_field_for_count": "a"},
{"content": "text2", "id": "2", "meta_field_for_count": "b"},
{"content": "text3", "id": "3", "meta_field_for_count": "b"},
{"content": "text4", "id": "4", "meta_field_for_count": "b"},
]
document_store.write_documents(documents)
assert document_store.get_document_count() == 4
assert document_store.get_document_count(filters={"meta_field_for_count": ["a"]}) == 1
assert document_store.get_document_count(filters={"meta_field_for_count": ["b"]}) == 3
def test_get_all_documents_generator(document_store):
documents = [
{"content": "text1", "id": "1", "meta_field_for_count": "a"},
{"content": "text2", "id": "2", "meta_field_for_count": "b"},
{"content": "text3", "id": "3", "meta_field_for_count": "b"},
{"content": "text4", "id": "4", "meta_field_for_count": "b"},
{"content": "text5", "id": "5", "meta_field_for_count": "b"},
]
document_store.write_documents(documents)
assert len(list(document_store.get_all_documents_generator(batch_size=2))) == 5
@pytest.mark.parametrize("update_existing_documents", [True, False])
def test_update_existing_documents(document_store, update_existing_documents):
original_docs = [
{"content": "text1_orig", "id": "1", "meta_field_for_count": "a"},
]
updated_docs = [
{"content": "text1_new", "id": "1", "meta_field_for_count": "a"},
]
document_store.write_documents(original_docs)
assert document_store.get_document_count() == 1
if update_existing_documents:
document_store.write_documents(updated_docs, duplicate_documents="overwrite")
else:
with pytest.raises(Exception):
document_store.write_documents(updated_docs, duplicate_documents="fail")
stored_docs = document_store.get_all_documents()
assert len(stored_docs) == 1
if update_existing_documents:
assert stored_docs[0].content == updated_docs[0]["content"]
else:
assert stored_docs[0].content == original_docs[0]["content"]
def test_write_document_meta(document_store):
documents = [
{"content": "dict_without_meta", "id": "1"},
{"content": "dict_with_meta", "meta_field": "test2", "name": "filename2", "id": "2"},
Document(content="document_object_without_meta", id="3"),
Document(content="document_object_with_meta", meta={"meta_field": "test4", "name": "filename3"}, id="4"),
]
document_store.write_documents(documents)
documents_in_store = document_store.get_all_documents()
assert len(documents_in_store) == 4
assert not document_store.get_document_by_id("1").meta
assert document_store.get_document_by_id("2").meta["meta_field"] == "test2"
assert not document_store.get_document_by_id("3").meta
assert document_store.get_document_by_id("4").meta["meta_field"] == "test4"
def test_write_document_index(document_store):
documents = [
{"content": "text1", "id": "1"},
{"content": "text2", "id": "2"},
]
document_store.write_documents([documents[0]], index="haystack_test_one")
assert len(document_store.get_all_documents(index="haystack_test_one")) == 1
document_store.write_documents([documents[1]], index="haystack_test_two")
assert len(document_store.get_all_documents(index="haystack_test_two")) == 1
assert len(document_store.get_all_documents(index="haystack_test_one")) == 1
assert len(document_store.get_all_documents()) == 0
def test_document_with_embeddings(document_store):
documents = [
{"content": "text1", "id": "1", "embedding": np.random.rand(768).astype(np.float32)},
{"content": "text2", "id": "2", "embedding": np.random.rand(768).astype(np.float64)},
{"content": "text3", "id": "3", "embedding": np.random.rand(768).astype(np.float32).tolist()},
{"content": "text4", "id": "4", "embedding": np.random.rand(768).astype(np.float32)},
]
document_store.write_documents(documents, index="haystack_test_one")
assert len(document_store.get_all_documents(index="haystack_test_one")) == 4
if not isinstance(document_store, WeaviateDocumentStore):
# weaviate is excluded because it would return dummy vectors instead of None
documents_without_embedding = document_store.get_all_documents(index="haystack_test_one", return_embedding=False)
assert documents_without_embedding[0].embedding is None
documents_with_embedding = document_store.get_all_documents(index="haystack_test_one", return_embedding=True)
assert isinstance(documents_with_embedding[0].embedding, (list, np.ndarray))
@pytest.mark.parametrize("retriever", ["embedding"], indirect=True)
def test_update_embeddings(document_store, retriever):
documents = []
for i in range(6):
documents.append({"content": f"text_{i}", "id": str(i), "meta_field": f"value_{i}"})
documents.append({"content": "text_0", "id": "6", "meta_field": "value_0"})
document_store.write_documents(documents, index="haystack_test_one")
document_store.update_embeddings(retriever, index="haystack_test_one", batch_size=3)
documents = document_store.get_all_documents(index="haystack_test_one", return_embedding=True)
assert len(documents) == 7
for doc in documents:
assert type(doc.embedding) is np.ndarray
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_0"]},
return_embedding=True,
)
assert len(documents) == 2
for doc in documents:
assert doc.meta["meta_field"] == "value_0"
np.testing.assert_array_almost_equal(documents[0].embedding, documents[1].embedding, decimal=4)
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_0", "value_5"]},
return_embedding=True,
)
documents_with_value_0 = [doc for doc in documents if doc.meta["meta_field"] == "value_0"]
documents_with_value_5 = [doc for doc in documents if doc.meta["meta_field"] == "value_5"]
np.testing.assert_raises(
AssertionError,
np.testing.assert_array_equal,
documents_with_value_0[0].embedding,
documents_with_value_5[0].embedding
)
doc = {"content": "text_7", "id": "7", "meta_field": "value_7",
"embedding": retriever.embed_queries(texts=["a random string"])[0]}
document_store.write_documents([doc], index="haystack_test_one")
documents = []
for i in range(8, 11):
documents.append({"content": f"text_{i}", "id": str(i), "meta_field": f"value_{i}"})
document_store.write_documents(documents, index="haystack_test_one")
doc_before_update = document_store.get_all_documents(index="haystack_test_one", filters={"meta_field": ["value_7"]})[0]
embedding_before_update = doc_before_update.embedding
# test updating only documents without embeddings
if not isinstance(document_store, WeaviateDocumentStore):
# All the documents in Weaviate store have an embedding by default. "update_existing_embeddings=False" is not allowed
document_store.update_embeddings(retriever, index="haystack_test_one", batch_size=3, update_existing_embeddings=False)
doc_after_update = document_store.get_all_documents(index="haystack_test_one", filters={"meta_field": ["value_7"]})[0]
embedding_after_update = doc_after_update.embedding
np.testing.assert_array_equal(embedding_before_update, embedding_after_update)
# test updating with filters
if isinstance(document_store, FAISSDocumentStore):
with pytest.raises(Exception):
document_store.update_embeddings(
retriever, index="haystack_test_one", update_existing_embeddings=True, filters={"meta_field": ["value"]}
)
else:
document_store.update_embeddings(
retriever, index="haystack_test_one", batch_size=3, filters={"meta_field": ["value_0", "value_1"]}
)
doc_after_update = document_store.get_all_documents(index="haystack_test_one", filters={"meta_field": ["value_7"]})[0]
embedding_after_update = doc_after_update.embedding
np.testing.assert_array_equal(embedding_before_update, embedding_after_update)
# test update all embeddings
document_store.update_embeddings(retriever, index="haystack_test_one", batch_size=3, update_existing_embeddings=True)
assert document_store.get_embedding_count(index="haystack_test_one") == 11
doc_after_update = document_store.get_all_documents(index="haystack_test_one", filters={"meta_field": ["value_7"]})[0]
embedding_after_update = doc_after_update.embedding
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, embedding_before_update, embedding_after_update)
# test update embeddings for newly added docs
documents = []
for i in range(12, 15):
documents.append({"content": f"text_{i}", "id": str(i), "meta_field": f"value_{i}"})
document_store.write_documents(documents, index="haystack_test_one")
if not isinstance(document_store, WeaviateDocumentStore):
# All the documents in Weaviate store have an embedding by default. "update_existing_embeddings=False" is not allowed
document_store.update_embeddings(retriever, index="haystack_test_one", batch_size=3, update_existing_embeddings=False)
assert document_store.get_embedding_count(index="haystack_test_one") == 14
@pytest.mark.parametrize("retriever", ["table_text_retriever"], indirect=True)
@pytest.mark.vector_dim(512)
def test_update_embeddings_table_text_retriever(document_store, retriever):
documents = []
for i in range(3):
documents.append({"content": f"text_{i}",
"id": f"pssg_{i}",
"meta_field": f"value_text_{i}",
"content_type": "text"})
documents.append({"content": pd.DataFrame(columns=[f"col_{i}", f"col_{i+1}"], data=[[f"cell_{i}", f"cell_{i+1}"]]),
"id": f"table_{i}",
f"meta_field": f"value_table_{i}",
"content_type": "table"})
documents.append({"content": "text_0",
"id": "pssg_4",
"meta_field": "value_text_0",
"content_type": "text"})
documents.append({"content": pd.DataFrame(columns=["col_0", "col_1"], data=[["cell_0", "cell_1"]]),
"id": "table_4",
"meta_field": "value_table_0",
"content_type": "table"})
document_store.write_documents(documents, index="haystack_test_one")
document_store.update_embeddings(retriever, index="haystack_test_one", batch_size=3)
documents = document_store.get_all_documents(index="haystack_test_one", return_embedding=True)
assert len(documents) == 8
for doc in documents:
assert type(doc.embedding) is np.ndarray
# Check if Documents with same content (text) get same embedding
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_text_0"]},
return_embedding=True,
)
assert len(documents) == 2
for doc in documents:
assert doc.meta["meta_field"] == "value_text_0"
np.testing.assert_array_almost_equal(documents[0].embedding, documents[1].embedding, decimal=4)
# Check if Documents with same content (table) get same embedding
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_table_0"]},
return_embedding=True,
)
assert len(documents) == 2
for doc in documents:
assert doc.meta["meta_field"] == "value_table_0"
np.testing.assert_array_almost_equal(documents[0].embedding, documents[1].embedding, decimal=4)
# Check if Documents wih different content (text) get different embedding
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_text_1", "value_text_2"]},
return_embedding=True,
)
np.testing.assert_raises(
AssertionError,
np.testing.assert_array_equal,
documents[0].embedding,
documents[1].embedding
)
# Check if Documents with different content (table) get different embeddings
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_table_1", "value_table_2"]},
return_embedding=True,
)
np.testing.assert_raises(
AssertionError,
np.testing.assert_array_equal,
documents[0].embedding,
documents[1].embedding
)
# Check if Documents with different content (table + text) get different embeddings
documents = document_store.get_all_documents(
index="haystack_test_one",
filters={"meta_field": ["value_text_1", "value_table_1"]},
return_embedding=True,
)
np.testing.assert_raises(
AssertionError,
np.testing.assert_array_equal,
documents[0].embedding,
documents[1].embedding
)
def test_delete_all_documents(document_store_with_docs):
assert len(document_store_with_docs.get_all_documents()) == 3
document_store_with_docs.delete_documents()
documents = document_store_with_docs.get_all_documents()
assert len(documents) == 0
def test_delete_documents(document_store_with_docs):
assert len(document_store_with_docs.get_all_documents()) == 3
document_store_with_docs.delete_documents()
documents = document_store_with_docs.get_all_documents()
assert len(documents) == 0
def test_delete_documents_with_filters(document_store_with_docs):
document_store_with_docs.delete_documents(filters={"meta_field": ["test1", "test2"]})
documents = document_store_with_docs.get_all_documents()
assert len(documents) == 1
assert documents[0].meta["meta_field"] == "test3"
def test_delete_documents_by_id(document_store_with_docs):
docs_to_delete = document_store_with_docs.get_all_documents(filters={"meta_field": ["test1", "test2"]})
docs_not_to_delete = document_store_with_docs.get_all_documents(filters={"meta_field": ["test3"]})
document_store_with_docs.delete_documents(ids=[doc.id for doc in docs_to_delete])
all_docs_left = document_store_with_docs.get_all_documents()
assert len(all_docs_left) == 1
assert all_docs_left[0].meta["meta_field"] == "test3"
all_ids_left = [doc.id for doc in all_docs_left]
assert all(doc.id in all_ids_left for doc in docs_not_to_delete)
def test_delete_documents_by_id_with_filters(document_store_with_docs):
docs_to_delete = document_store_with_docs.get_all_documents(filters={"meta_field": ["test1", "test2"]})
docs_not_to_delete = document_store_with_docs.get_all_documents(filters={"meta_field": ["test3"]})
document_store_with_docs.delete_documents(ids=[doc.id for doc in docs_to_delete], filters={"meta_field": ["test1"]})
all_docs_left = document_store_with_docs.get_all_documents()
assert len(all_docs_left) == 2
assert all(doc.meta["meta_field"] != "test1" for doc in all_docs_left)
all_ids_left = [doc.id for doc in all_docs_left]
assert all(doc.id in all_ids_left for doc in docs_not_to_delete)
# exclude weaviate because it does not support storing labels
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
def test_labels(document_store):
label = Label(
query="question1",
answer=Answer(answer="answer",
type="extractive",
score=0.0,
context="something",
offsets_in_document=[Span(start=12, end=14)],
offsets_in_context=[Span(start=12, end=14)],
),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="something", id="123"),
no_answer=False,
origin="gold-label",
)
document_store.write_labels([label], index="haystack_test_label")
labels = document_store.get_all_labels(index="haystack_test_label")
assert len(labels) == 1
assert label == labels[0]
# different index
labels = document_store.get_all_labels()
assert len(labels) == 0
# write second label + duplicate
label2 = Label(
query="question2",
answer=Answer(answer="another answer",
type="extractive",
score=0.0,
context="something",
offsets_in_document=[Span(start=12, end=14)],
offsets_in_context=[Span(start=12, end=14)],
),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="something", id="324"),
no_answer=False,
origin="gold-label",
)
document_store.write_labels([label, label2], index="haystack_test_label")
labels = document_store.get_all_labels(index="haystack_test_label")
# check that second label has been added but not the duplicate
assert len(labels) == 2
assert label in labels
assert label2 in labels
# delete filtered label2 by id
document_store.delete_labels(index="haystack_test_label", ids=[labels[1].id])
labels = document_store.get_all_labels(index="haystack_test_label")
assert label == labels[0]
assert len(labels) == 1
# re-add label2
document_store.write_labels([label2], index="haystack_test_label")
labels = document_store.get_all_labels(index="haystack_test_label")
assert len(labels) == 2
# delete filtered label2 by query text
document_store.delete_labels(index="haystack_test_label", filters={"query": [labels[1].query]})
labels = document_store.get_all_labels(index="haystack_test_label")
assert label == labels[0]
assert len(labels) == 1
# re-add label2
document_store.write_labels([label2], index="haystack_test_label")
labels = document_store.get_all_labels(index="haystack_test_label")
assert len(labels) == 2
# delete intersection of filters and ids, which is empty
document_store.delete_labels(index="haystack_test_label", ids=[labels[0].id], filters={"query": [labels[1].query]})
labels = document_store.get_all_labels(index="haystack_test_label")
assert len(labels) == 2
assert label in labels
assert label2 in labels
# delete all labels
document_store.delete_labels(index="haystack_test_label")
labels = document_store.get_all_labels(index="haystack_test_label")
assert len(labels) == 0
# exclude weaviate because it does not support storing labels
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
def test_multilabel(document_store):
labels =[
Label(
id="standard",
query="question",
answer=Answer(answer="answer1",
offsets_in_document=[Span(start=12, end=18)]),
document=Document(content="some", id="123"),
is_correct_answer=True,
is_correct_document=True,
no_answer=False,
origin="gold-label",
),
# different answer in same doc
Label(
id="diff-answer-same-doc",
query="question",
answer=Answer(answer="answer2",
offsets_in_document=[Span(start=12, end=18)]),
document=Document(content="some", id="123"),
is_correct_answer=True,
is_correct_document=True,
no_answer=False,
origin="gold-label",
),
# answer in different doc
Label(
id="diff-answer-diff-doc",
query="question",
answer=Answer(answer="answer3",
offsets_in_document=[Span(start=12, end=18)]),
document=Document(content="some other", id="333"),
is_correct_answer=True,
is_correct_document=True,
no_answer=False,
origin="gold-label",
),
# 'no answer', should be excluded from MultiLabel
Label(
id="4-no-answer",
query="question",
answer=Answer(answer="",
offsets_in_document=[Span(start=0, end=0)]),
document=Document(content="some", id="777"),
is_correct_answer=True,
is_correct_document=True,
no_answer=True,
origin="gold-label",
),
# is_correct_answer=False, should be excluded from MultiLabel if "drop_negatives = True"
Label(
id="5-negative",
query="question",
answer=Answer(answer="answer5",
offsets_in_document=[Span(start=12, end=18)]),
document=Document(content="some", id="123"),
is_correct_answer=False,
is_correct_document=True,
no_answer=False,
origin="gold-label",
),
]
document_store.write_labels(labels, index="haystack_test_multilabel")
# regular labels - not aggregated
list_labels = document_store.get_all_labels(index="haystack_test_multilabel")
assert list_labels == labels
assert len(list_labels) == 5
# Currently we don't enforce writing (missing) docs automatically when adding labels and there's no DB relationship between the two.
# We should introduce this when we refactored the logic of "index" to be rather a "collection" of labels+documents
# docs = document_store.get_all_documents(index="haystack_test_multilabel")
# assert len(docs) == 3
# Multi labels (open domain)
multi_labels_open = document_store.get_all_labels_aggregated(index="haystack_test_multilabel",
open_domain=True, drop_negative_labels=True)
# for open-domain we group all together as long as they have the same question
assert len(multi_labels_open) == 1
# all labels are in there except the negative one
assert len(multi_labels_open[0].answers) == 4
assert "5-negative" not in [l.id for l in multi_labels_open[0].labels]
# Don't drop the negative label
multi_labels_open = document_store.get_all_labels_aggregated(index="haystack_test_multilabel", open_domain=True,
drop_no_answers=False, drop_negative_labels=False)
assert len(multi_labels_open[0].answers) == 5
# Drop no answer + negative
multi_labels_open = document_store.get_all_labels_aggregated(index="haystack_test_multilabel", open_domain=True,
drop_no_answers=True, drop_negative_labels=True)
assert len(multi_labels_open[0].answers) == 3
# for closed domain we group by document so we expect 3 multilabels with 2,1,1 labels each (negative dropped again)
multi_labels = document_store.get_all_labels_aggregated(index="haystack_test_multilabel",
open_domain=False, drop_negative_labels=True)
assert len(multi_labels) == 3
label_counts = set([len(ml.labels) for ml in multi_labels])
assert label_counts == set([2,1,1])
assert len(multi_labels[0].answers) == len(multi_labels[0].document_ids)
# make sure there' nothing stored in another index
multi_labels = document_store.get_all_labels_aggregated()
assert len(multi_labels) == 0
docs = document_store.get_all_documents()
assert len(docs) == 0
# exclude weaviate because it does not support storing labels
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
def test_multilabel_no_answer(document_store):
labels = [
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=True,
origin="gold-label",
),
# no answer in different doc
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="123"),
no_answer=True,
origin="gold-label",
),
# no answer in same doc, should be excluded
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=True,
origin="gold-label",
),
# no answer with is_correct_answer=False, should be excluded
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=False,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=True,
origin="gold-label",
),
]
document_store.write_labels(labels, index="haystack_test_multilabel_no_answer")
labels = document_store.get_all_labels(index="haystack_test_multilabel_no_answer")
assert len(labels) == 4
multi_labels = document_store.get_all_labels_aggregated(index="haystack_test_multilabel_no_answer",
open_domain=True,
drop_no_answers=False,
drop_negative_labels=True)
assert len(multi_labels) == 1
assert multi_labels[0].no_answer == True
assert len(multi_labels[0].document_ids) == 2
assert len(multi_labels[0].answers) == 2
multi_labels = document_store.get_all_labels_aggregated(index="haystack_test_multilabel_no_answer",
open_domain=True,
drop_no_answers=False,
drop_negative_labels=False)
assert len(multi_labels) == 1
assert multi_labels[0].no_answer == True
assert len(multi_labels[0].document_ids) == 3
assert len(multi_labels[0].labels) == 3
assert len(multi_labels[0].answers) == 3
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss"], indirect=True)
# Currently update_document_meta() is not implemented for Memory doc store
def test_update_meta(document_store):
documents = [
Document(
content="Doc1",
meta={"meta_key_1": "1", "meta_key_2": "1"}
),
Document(
content="Doc2",
meta={"meta_key_1": "2", "meta_key_2": "2"}
),
Document(
content="Doc3",
meta={"meta_key_1": "3", "meta_key_2": "3"}
)
]
document_store.write_documents(documents)
document_2 = document_store.get_all_documents(filters={"meta_key_2": ["2"]})[0]
document_store.update_document_meta(document_2.id, meta={"meta_key_1": "99", "meta_key_2": "2"})
updated_document = document_store.get_document_by_id(document_2.id)
assert len(updated_document.meta.keys()) == 2
assert updated_document.meta["meta_key_1"] == "99"
assert updated_document.meta["meta_key_2"] == "2"
@pytest.mark.parametrize("document_store_type", ["elasticsearch", "memory"])
def test_custom_embedding_field(document_store_type):
document_store = get_document_store(
document_store_type=document_store_type, embedding_field="custom_embedding_field"
)
doc_to_write = {"content": "test", "custom_embedding_field": np.random.rand(768).astype(np.float32)}
document_store.write_documents([doc_to_write])
documents = document_store.get_all_documents(return_embedding=True)
assert len(documents) == 1
assert documents[0].content == "test"
np.testing.assert_array_equal(doc_to_write["custom_embedding_field"], documents[0].embedding)
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
def test_get_meta_values_by_key(document_store):
documents = [
Document(
content="Doc1",
meta={"meta_key_1": "1", "meta_key_2": "11"}
),
Document(
content="Doc2",
meta={"meta_key_1": "2", "meta_key_2": "22"}
),
Document(
content="Doc3",
meta={"meta_key_1": "3", "meta_key_2": "33"}
)
]
document_store.write_documents(documents)
# test without filters or query
result = document_store.get_metadata_values_by_key(key="meta_key_1")
for bucket in result:
assert bucket["value"] in ["1", "2", "3"]
assert bucket["count"] == 1
# test with filters but no query
result = document_store.get_metadata_values_by_key(key="meta_key_1", filters={"meta_key_2": ["11", "22"]})
for bucket in result:
assert bucket["value"] in ["1", "2"]
assert bucket["count"] == 1
# test with filters & query
result = document_store.get_metadata_values_by_key(key="meta_key_1", query="Doc1")
for bucket in result:
assert bucket["value"] in ["1"]
assert bucket["count"] == 1
@pytest.mark.elasticsearch
def test_elasticsearch_custom_fields():
client = Elasticsearch()
client.indices.delete(index='haystack_test_custom', ignore=[404])
document_store = ElasticsearchDocumentStore(index="haystack_test_custom", content_field="custom_text_field",
embedding_field="custom_embedding_field")
doc_to_write = {"custom_text_field": "test", "custom_embedding_field": np.random.rand(768).astype(np.float32)}
document_store.write_documents([doc_to_write])
documents = document_store.get_all_documents(return_embedding=True)
assert len(documents) == 1
assert documents[0].content == "test"
np.testing.assert_array_equal(doc_to_write["custom_embedding_field"], documents[0].embedding)
@pytest.mark.elasticsearch
def test_get_document_count_only_documents_without_embedding_arg():
documents = [
{"content": "text1", "id": "1", "embedding": np.random.rand(768).astype(np.float32), "meta_field_for_count": "a"},
{"content": "text2", "id": "2", "embedding": np.random.rand(768).astype(np.float64), "meta_field_for_count": "b"},
{"content": "text3", "id": "3", "embedding": np.random.rand(768).astype(np.float32).tolist()},
{"content": "text4", "id": "4", "meta_field_for_count": "b"},
{"content": "text5", "id": "5", "meta_field_for_count": "b"},
{"content": "text6", "id": "6", "meta_field_for_count": "c"},
{"content": "text7", "id": "7", "embedding": np.random.rand(768).astype(np.float64), "meta_field_for_count": "c"},
]
_index: str = "haystack_test_count"
document_store = ElasticsearchDocumentStore(index=_index)
document_store.delete_documents(index=_index)
document_store.write_documents(documents)
assert document_store.get_document_count() == 7
assert document_store.get_document_count(only_documents_without_embedding=True) == 3
assert document_store.get_document_count(only_documents_without_embedding=True,
filters={"meta_field_for_count": ["c"]}) == 1
assert document_store.get_document_count(only_documents_without_embedding=True,
filters={"meta_field_for_count": ["b"]}) == 2
@pytest.mark.elasticsearch
def test_skip_missing_embeddings():
documents = [
{"content": "text1", "id": "1"}, # a document without embeddings
{"content": "text2", "id": "2", "embedding": np.random.rand(768).astype(np.float64)},
{"content": "text3", "id": "3", "embedding": np.random.rand(768).astype(np.float32).tolist()},
{"content": "text4", "id": "4", "embedding": np.random.rand(768).astype(np.float32)}
]
document_store = ElasticsearchDocumentStore(index="skip_missing_embedding_index")
document_store.write_documents(documents)
document_store.skip_missing_embeddings = True
retrieved_docs = document_store.query_by_embedding(np.random.rand(768).astype(np.float32))
assert len(retrieved_docs) == 3
document_store.skip_missing_embeddings = False
with pytest.raises(RequestError):
document_store.query_by_embedding(np.random.rand(768).astype(np.float32))
# Test scenario with no embeddings for the entire index
documents = [
{"content": "text1", "id": "1"},
{"content": "text2", "id": "2"},
{"content": "text3", "id": "3"},
{"content": "text4", "id": "4"}
]
document_store.delete_documents()
document_store.write_documents(documents)
document_store.skip_missing_embeddings = True
with pytest.raises(RequestError):
document_store.query_by_embedding(np.random.rand(768).astype(np.float32))
@pytest.mark.elasticsearch
def test_elasticsearch_synonyms():
synonyms = ["i-pod, i pod, ipod", "sea biscuit, sea biscit, seabiscuit", "foo, foo bar, baz"]
synonym_type = "synonym_graph"
client = Elasticsearch()
client.indices.delete(index='haystack_synonym_arg', ignore=[404])
document_store = ElasticsearchDocumentStore(index="haystack_synonym_arg", synonyms=synonyms,
synonym_type=synonym_type)
indexed_settings = client.indices.get_settings(index="haystack_synonym_arg")
assert synonym_type == indexed_settings['haystack_synonym_arg']['settings']['index']['analysis']['filter']['synonym']['type']
assert synonyms == indexed_settings['haystack_synonym_arg']['settings']['index']['analysis']['filter']['synonym']['synonyms']