haystack/test/preview/components/audio/test_whisper_local.py
ZanSara 6e70d403f8
feat: Improve Document for Haystack 2.0 (#5738)
* initial draft

* tests

* add proposal

* proposal number

* reno

* fix tests and usage of content and content_type

* update branch & fix more tests

* mypy

* add docstring

* fix more tests

* review feedback

* improve __str__

* Apply suggestions from code review

Co-authored-by: Daria Fokina <daria.fokina@deepset.ai>

* Update haystack/preview/dataclasses/document.py

Co-authored-by: Daria Fokina <daria.fokina@deepset.ai>

* improve __str__

* fix tests

* fix more tests

* Update haystack/preview/document_stores/memory/document_store.py

---------

Co-authored-by: Daria Fokina <daria.fokina@deepset.ai>
2023-09-11 17:40:00 +02:00

158 lines
6.1 KiB
Python

from pathlib import Path
from unittest.mock import patch, MagicMock
import pytest
import torch
from haystack.preview.dataclasses import Document
from haystack.preview.components.audio import LocalWhisperTranscriber
SAMPLES_PATH = Path(__file__).parent.parent.parent / "test_files"
class TestLocalWhisperTranscriber:
@pytest.mark.unit
def test_init(self):
transcriber = LocalWhisperTranscriber(
model_name_or_path="large-v2"
) # Doesn't matter if it's huge, the model is not loaded in init.
assert transcriber.model_name == "large-v2"
assert transcriber.device == torch.device("cpu")
assert transcriber._model is None
@pytest.mark.unit
def test_init_wrong_model(self):
with pytest.raises(ValueError, match="Model name 'whisper-1' not recognized"):
LocalWhisperTranscriber(model_name_or_path="whisper-1")
@pytest.mark.unit
def test_to_dict(self):
transcriber = LocalWhisperTranscriber()
data = transcriber.to_dict()
assert data == {
"type": "LocalWhisperTranscriber",
"init_parameters": {"model_name_or_path": "large", "device": "cpu", "whisper_params": {}},
}
@pytest.mark.unit
def test_to_dict_with_custom_init_parameters(self):
transcriber = LocalWhisperTranscriber(
model_name_or_path="tiny",
device="cuda",
whisper_params={"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
)
data = transcriber.to_dict()
assert data == {
"type": "LocalWhisperTranscriber",
"init_parameters": {
"model_name_or_path": "tiny",
"device": "cuda",
"whisper_params": {"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
},
}
@pytest.mark.unit
def test_from_dict(self):
data = {
"type": "LocalWhisperTranscriber",
"init_parameters": {
"model_name_or_path": "tiny",
"device": "cuda",
"whisper_params": {"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
},
}
transcriber = LocalWhisperTranscriber.from_dict(data)
assert transcriber.model_name == "tiny"
assert transcriber.device == torch.device("cuda")
assert transcriber.whisper_params == {"return_segments": True, "temperature": [0.1, 0.6, 0.8]}
@pytest.mark.unit
def test_warmup(self):
with patch("haystack.preview.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model_name_or_path="large-v2")
mocked_whisper.load_model.assert_not_called()
transcriber.warm_up()
mocked_whisper.load_model.assert_called_once_with("large-v2", device=torch.device(type="cpu"))
@pytest.mark.unit
def test_warmup_doesnt_reload(self):
with patch("haystack.preview.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model_name_or_path="large-v2")
transcriber.warm_up()
transcriber.warm_up()
mocked_whisper.load_model.assert_called_once()
@pytest.mark.unit
def test_run_with_path(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.run(audio_files=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"])
expected = Document(
text="test transcription",
metadata={
"audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav",
"other_metadata": ["other", "meta", "data"],
},
)
assert results["documents"] == [expected]
@pytest.mark.unit
def test_run_with_str(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.run(
audio_files=[str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute())]
)
expected = Document(
text="test transcription",
metadata={
"audio_file": str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute()),
"other_metadata": ["other", "meta", "data"],
},
)
assert results["documents"] == [expected]
@pytest.mark.unit
def test_transcribe(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.transcribe(audio_files=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"])
expected = Document(
text="test transcription",
metadata={
"audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav",
"other_metadata": ["other", "meta", "data"],
},
)
assert results == [expected]
@pytest.mark.unit
def test_transcribe_stream(self):
comp = LocalWhisperTranscriber(model_name_or_path="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.transcribe(
audio_files=[open(SAMPLES_PATH / "audio" / "this is the content of the document.wav", "rb")]
)
expected = Document(
text="test transcription",
metadata={"audio_file": "<<binary stream>>", "other_metadata": ["other", "meta", "data"]},
)
assert results == [expected]