mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-21 16:04:09 +00:00

* make output consistent * make output consistent * added tests for details * better tests * Update test_document_classifier.py * make black happy * Update test_document_classifier.py * Update test_document_classifier.py
188 lines
7.4 KiB
Markdown
188 lines
7.4 KiB
Markdown
<a id="base"></a>
|
|
|
|
# Module base
|
|
|
|
<a id="base.BaseDocumentClassifier"></a>
|
|
|
|
## BaseDocumentClassifier
|
|
|
|
```python
|
|
class BaseDocumentClassifier(BaseComponent)
|
|
```
|
|
|
|
<a id="base.BaseDocumentClassifier.timing"></a>
|
|
|
|
#### BaseDocumentClassifier.timing
|
|
|
|
```python
|
|
def timing(fn, attr_name)
|
|
```
|
|
|
|
Wrapper method used to time functions.
|
|
|
|
<a id="transformers"></a>
|
|
|
|
# Module transformers
|
|
|
|
<a id="transformers.TransformersDocumentClassifier"></a>
|
|
|
|
## TransformersDocumentClassifier
|
|
|
|
```python
|
|
class TransformersDocumentClassifier(BaseDocumentClassifier)
|
|
```
|
|
|
|
Transformer based model for document classification using the HuggingFace's transformers framework
|
|
(https://github.com/huggingface/transformers).
|
|
While the underlying model can vary (BERT, Roberta, DistilBERT ...), the interface remains the same.
|
|
This node classifies documents and adds the output from the classification step to the document's meta data.
|
|
The meta field of the document is a dictionary with the following format:
|
|
``'meta': {'name': '450_Baelor.txt', 'classification': {'label': 'love', 'score': 0.960899, 'details': {'love': 0.960899, 'joy': 0.032584, ...}}}``
|
|
|
|
Classification is run on document's content field by default. If you want it to run on another field,
|
|
set the `classification_field` to one of document's meta fields.
|
|
|
|
With this document_classifier, you can directly get predictions via predict()
|
|
|
|
**Usage example at query time:**
|
|
```python
|
|
| ...
|
|
| retriever = BM25Retriever(document_store=document_store)
|
|
| document_classifier = TransformersDocumentClassifier(model_name_or_path="bhadresh-savani/distilbert-base-uncased-emotion")
|
|
| p = Pipeline()
|
|
| p.add_node(component=retriever, name="Retriever", inputs=["Query"])
|
|
| p.add_node(component=document_classifier, name="Classifier", inputs=["Retriever"])
|
|
| res = p.run(
|
|
| query="Who is the father of Arya Stark?",
|
|
| params={"Retriever": {"top_k": 10}}
|
|
| )
|
|
|
|
|
| # print the classification results
|
|
| print_documents(res, max_text_len=100, print_meta=True)
|
|
| # or access the predicted class label directly
|
|
| res["documents"][0].to_dict()["meta"]["classification"]["label"]
|
|
```
|
|
|
|
**Usage example at index time:**
|
|
```python
|
|
| ...
|
|
| converter = TextConverter()
|
|
| preprocessor = Preprocessor()
|
|
| document_store = ElasticsearchDocumentStore()
|
|
| document_classifier = TransformersDocumentClassifier(model_name_or_path="bhadresh-savani/distilbert-base-uncased-emotion",
|
|
| batch_size=16)
|
|
| p = Pipeline()
|
|
| p.add_node(component=converter, name="TextConverter", inputs=["File"])
|
|
| p.add_node(component=preprocessor, name="Preprocessor", inputs=["TextConverter"])
|
|
| p.add_node(component=document_classifier, name="DocumentClassifier", inputs=["Preprocessor"])
|
|
| p.add_node(component=document_store, name="DocumentStore", inputs=["DocumentClassifier"])
|
|
| p.run(file_paths=file_paths)
|
|
```
|
|
|
|
<a id="transformers.TransformersDocumentClassifier.__init__"></a>
|
|
|
|
#### TransformersDocumentClassifier.\_\_init\_\_
|
|
|
|
```python
|
|
def __init__(model_name_or_path:
|
|
str = "bhadresh-savani/distilbert-base-uncased-emotion",
|
|
model_version: Optional[str] = None,
|
|
tokenizer: Optional[str] = None,
|
|
use_gpu: bool = True,
|
|
top_k: Optional[int] = 1,
|
|
task: str = "text-classification",
|
|
labels: Optional[List[str]] = None,
|
|
batch_size: int = 16,
|
|
classification_field: str = None,
|
|
progress_bar: bool = True,
|
|
use_auth_token: Optional[Union[str, bool]] = None,
|
|
devices: Optional[List[Union[str, torch.device]]] = None)
|
|
```
|
|
|
|
Load a text classification model from Transformers.
|
|
|
|
Available models for the task of text-classification include:
|
|
- ``'bhadresh-savani/distilbert-base-uncased-emotion'``
|
|
- ``'Hate-speech-CNERG/dehatebert-mono-english'``
|
|
|
|
Available models for the task of zero-shot-classification include:
|
|
- ``'valhalla/distilbart-mnli-12-3'``
|
|
- ``'cross-encoder/nli-distilroberta-base'``
|
|
|
|
See https://huggingface.co/models for full list of available models.
|
|
Filter for text classification models: https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads
|
|
Filter for zero-shot classification models (NLI): https://huggingface.co/models?pipeline_tag=zero-shot-classification&sort=downloads&search=nli
|
|
|
|
**Arguments**:
|
|
|
|
- `model_name_or_path`: Directory of a saved model or the name of a public model e.g. 'bhadresh-savani/distilbert-base-uncased-emotion'.
|
|
See https://huggingface.co/models for full list of available models.
|
|
- `model_version`: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash.
|
|
- `tokenizer`: Name of the tokenizer (usually the same as model)
|
|
- `use_gpu`: Whether to use GPU (if available).
|
|
- `top_k`: The number of top predictions to return. The default is 1. Enter None to return all the predictions. Only used for task 'text-classification'.
|
|
- `task`: 'text-classification' or 'zero-shot-classification'
|
|
- `labels`: Only used for task 'zero-shot-classification'. List of string defining class labels, e.g.,
|
|
["positive", "negative"] otherwise None. Given a LABEL, the sequence fed to the model is "<cls> sequence to
|
|
classify <sep> This example is LABEL . <sep>" and the model predicts whether that sequence is a contradiction
|
|
or an entailment.
|
|
- `batch_size`: Number of Documents to be processed at a time.
|
|
- `classification_field`: Name of Document's meta field to be used for classification. If left unset, Document.content is used by default.
|
|
- `progress_bar`: Whether to show a progress bar while processing.
|
|
- `use_auth_token`: The API token used to download private models from Huggingface.
|
|
If this parameter is set to `True`, then the token generated when running
|
|
`transformers-cli login` (stored in ~/.huggingface) will be used.
|
|
Additional information can be found here
|
|
https://huggingface.co/transformers/main_classes/model.html#transformers.PreTrainedModel.from_pretrained
|
|
- `devices`: List of torch devices (e.g. cuda, cpu, mps) to limit inference to specific devices.
|
|
A list containing torch device objects and/or strings is supported (For example
|
|
[torch.device('cuda:0'), "mps", "cuda:1"]). When specifying `use_gpu=False` the devices
|
|
parameter is not used and a single cpu device is used for inference.
|
|
|
|
<a id="transformers.TransformersDocumentClassifier.predict"></a>
|
|
|
|
#### TransformersDocumentClassifier.predict
|
|
|
|
```python
|
|
def predict(documents: List[Document],
|
|
batch_size: Optional[int] = None) -> List[Document]
|
|
```
|
|
|
|
Returns documents containing classification result in a meta field.
|
|
|
|
Documents are updated in place.
|
|
|
|
**Arguments**:
|
|
|
|
- `documents`: A list of Documents to classify.
|
|
- `batch_size`: The number of Documents to classify at a time.
|
|
|
|
**Returns**:
|
|
|
|
A list of Documents enriched with meta information.
|
|
|
|
<a id="transformers.TransformersDocumentClassifier.predict_batch"></a>
|
|
|
|
#### TransformersDocumentClassifier.predict\_batch
|
|
|
|
```python
|
|
def predict_batch(
|
|
documents: Union[List[Document], List[List[Document]]],
|
|
batch_size: Optional[int] = None
|
|
) -> Union[List[Document], List[List[Document]]]
|
|
```
|
|
|
|
Returns documents containing classification result in meta field.
|
|
|
|
Documents are updated in place.
|
|
|
|
**Arguments**:
|
|
|
|
- `documents`: List of Documents or list of lists of Documents to classify.
|
|
- `batch_size`: Number of Documents to classify at a time.
|
|
|
|
**Returns**:
|
|
|
|
List of Documents or list of lists of Documents enriched with meta information.
|
|
|