haystack/tutorials/Tutorial4_FAQ_style_QA.py
Sara Zan 13510aa753
Refactoring of the haystack package (#1624)
* Files moved, imports all broken

* Fix most imports and docstrings into

* Fix the paths to the modules in the API docs

* Add latest docstring and tutorial changes

* Add a few pipelines that were lost in the inports

* Fix a bunch of mypy warnings

* Add latest docstring and tutorial changes

* Create a file_classifier module

* Add docs for file_classifier

* Fixed most circular imports, now the REST API can start

* Add latest docstring and tutorial changes

* Tackling more mypy issues

* Reintroduce  from FARM and fix last mypy issues hopefully

* Re-enable old-style imports

* Fix some more import from the top-level  package in an attempt to sort out circular imports

* Fix some imports in tests to new-style to prevent failed class equalities from breaking tests

* Change document_store into document_stores

* Update imports in tutorials

* Add latest docstring and tutorial changes

* Probably fixes summarizer tests

* Improve the old-style import allowing module imports (should work)

* Try to fix the docs

* Remove dedicated KnowledgeGraph page from autodocs

* Remove dedicated GraphRetriever page from autodocs

* Fix generate_docstrings.sh with an updated list of yaml files to look for

* Fix some more modules in the docs

* Fix the document stores docs too

* Fix a small issue on Tutorial14

* Add latest docstring and tutorial changes

* Add deprecation warning to old-style imports

* Remove stray folder and import Dict into dense.py

* Change import path for MLFlowLogger

* Add old loggers path to the import path aliases

* Fix debug output of convert_ipynb.py

* Fix circular import on BaseRetriever

* Missed one merge block

* re-run tutorial 5

* Fix imports in tutorial 5

* Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base

* Add latest docstring and tutorial changes

* Fix typo in utils __init__

* Fix a few more imports

* Fix benchmarks too

* New-style imports in test_knowledge_graph

* Rollback setup.py

* Rollback squad_to_dpr too

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00

87 lines
3.8 KiB
Python
Executable File

from haystack.document_stores import ElasticsearchDocumentStore
from haystack.nodes import EmbeddingRetriever
from haystack.utils import launch_es
import pandas as pd
import requests
import logging
import subprocess
import time
def tutorial4_faq_style_qa():
## "FAQ-Style QA": Utilizing existing FAQs for Question Answering
# While *extractive Question Answering* works on pure texts and is therefore more generalizable, there's also a common alternative that utilizes existing FAQ data.
#
# Pros:
# - Very fast at inference time
# - Utilize existing FAQ data
# - Quite good control over answers
#
# Cons:
# - Generalizability: We can only answer questions that are similar to existing ones in FAQ
#
# In some use cases, a combination of extractive QA and FAQ-style can also be an interesting option.
launch_es()
### Init the DocumentStore
# In contrast to Tutorial 1 (extractive QA), we:
#
# * specify the name of our `text_field` in Elasticsearch that we want to return as an answer
# * specify the name of our `embedding_field` in Elasticsearch where we'll store the embedding of our question and that is used later for calculating our similarity to the incoming user question
# * set `excluded_meta_data=["question_emb"]` so that we don't return the huge embedding vectors in our search results
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="",
index="document",
embedding_field="question_emb",
embedding_dim=384,
excluded_meta_data=["question_emb"],
similarity="cosine")
### Create a Retriever using embeddings
# Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).
# We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings.
#
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=True)
# Download a csv containing some FAQ data
# Here: Some question-answer pairs related to COVID-19
temp = requests.get("https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/faqs/faq_covidbert.csv")
open('small_faq_covid.csv', 'wb').write(temp.content)
# Get dataframe with columns "question", "answer" and some custom metadata
df = pd.read_csv("small_faq_covid.csv")
# Minimal cleaning
df.fillna(value="", inplace=True)
df["question"] = df["question"].apply(lambda x: x.strip())
print(df.head())
# Get embeddings for our questions from the FAQs
questions = list(df["question"].values)
df["question_emb"] = retriever.embed_queries(texts=questions)
df = df.rename(columns={"question": "content"})
# Convert Dataframe to list of dicts and index them in our DocumentStore
docs_to_index = df.to_dict(orient="records")
document_store.write_documents(docs_to_index)
# Initialize a Pipeline (this time without a reader) and ask questions
from haystack.pipelines import FAQPipeline
pipe = FAQPipeline(retriever=retriever)
prediction = pipe.run(query="How is the virus spreading?", params={"Retriever": {"top_k": 10}})
for a in prediction["answers"]:
print(f"Answer: {a.answer}")
print(f"Question: {a.meta['query']}")
print(f"Score: {a.score}")
print("---------------------")
if __name__ == "__main__":
tutorial4_faq_style_qa()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/