mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-03 07:04:01 +00:00

* Relax our requirement for ToolCallDelta to better match ChoiceDeltaToolCall and ChoiceDeltaToolCallFunction from OpenAI * Add reno * Update tests
582 lines
22 KiB
Python
582 lines
22 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from openai.types.chat import chat_completion_chunk
|
|
from unittest.mock import patch, call
|
|
|
|
from haystack.components.generators.utils import _convert_streaming_chunks_to_chat_message, print_streaming_chunk
|
|
from haystack.dataclasses import ComponentInfo, StreamingChunk, ToolCall, ToolCallDelta, ToolCallResult
|
|
|
|
|
|
def test_convert_streaming_chunks_to_chat_message_tool_calls_in_any_chunk():
|
|
chunks = [
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": None,
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.910076",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0,
|
|
id="call_ZOj5l67zhZOx6jqjg7ATQwb6",
|
|
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
|
|
arguments="", name="rag_pipeline_tool"
|
|
),
|
|
type="function",
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.913919",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
start=True,
|
|
tool_calls=[
|
|
ToolCallDelta(id="call_ZOj5l67zhZOx6jqjg7ATQwb6", tool_name="rag_pipeline_tool", arguments="", index=0)
|
|
],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='{"qu')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.914439",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments='{"qu', index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='ery":')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.924146",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments='ery":', index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments=' "Wher')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.924420",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments=' "Wher', index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="e do")
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.944398",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments="e do", index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="es Ma")
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.944958",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments="es Ma", index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="rk liv")
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.945507",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments="rk liv", index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='e?"}')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.946018",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments='e?"}', index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=1,
|
|
id="call_STxsYY69wVOvxWqopAt3uWTB",
|
|
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="", name="get_weather"),
|
|
type="function",
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.946578",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=1,
|
|
start=True,
|
|
tool_calls=[
|
|
ToolCallDelta(id="call_STxsYY69wVOvxWqopAt3uWTB", tool_name="get_weather", arguments="", index=1)
|
|
],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='{"ci')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.946981",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=1,
|
|
tool_calls=[ToolCallDelta(arguments='{"ci', index=1)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='ty": ')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.947411",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=1,
|
|
tool_calls=[ToolCallDelta(arguments='ty": ', index=1)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='"Berli')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.947643",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=1,
|
|
tool_calls=[ToolCallDelta(arguments='"Berli', index=1)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=1, function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='n"}')
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.947939",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=1,
|
|
tool_calls=[ToolCallDelta(arguments='n"}', index=1)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": None,
|
|
"finish_reason": "tool_calls",
|
|
"received_at": "2025-02-19T16:02:55.948772",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
finish_reason="tool_calls",
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": None,
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.948772",
|
|
"usage": {
|
|
"completion_tokens": 42,
|
|
"prompt_tokens": 282,
|
|
"total_tokens": 324,
|
|
"completion_tokens_details": {
|
|
"accepted_prediction_tokens": 0,
|
|
"audio_tokens": 0,
|
|
"reasoning_tokens": 0,
|
|
"rejected_prediction_tokens": 0,
|
|
},
|
|
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
|
|
},
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
),
|
|
]
|
|
|
|
# Convert chunks to a chat message
|
|
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
|
|
|
|
assert not result.texts
|
|
assert not result.text
|
|
|
|
# Verify both tool calls were found and processed
|
|
assert len(result.tool_calls) == 2
|
|
assert result.tool_calls[0].id == "call_ZOj5l67zhZOx6jqjg7ATQwb6"
|
|
assert result.tool_calls[0].tool_name == "rag_pipeline_tool"
|
|
assert result.tool_calls[0].arguments == {"query": "Where does Mark live?"}
|
|
assert result.tool_calls[1].id == "call_STxsYY69wVOvxWqopAt3uWTB"
|
|
assert result.tool_calls[1].tool_name == "get_weather"
|
|
assert result.tool_calls[1].arguments == {"city": "Berlin"}
|
|
|
|
# Verify meta information
|
|
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
|
|
assert result.meta["finish_reason"] == "tool_calls"
|
|
assert result.meta["index"] == 0
|
|
assert result.meta["completion_start_time"] == "2025-02-19T16:02:55.910076"
|
|
assert result.meta["usage"] == {
|
|
"completion_tokens": 42,
|
|
"prompt_tokens": 282,
|
|
"total_tokens": 324,
|
|
"completion_tokens_details": {
|
|
"accepted_prediction_tokens": 0,
|
|
"audio_tokens": 0,
|
|
"reasoning_tokens": 0,
|
|
"rejected_prediction_tokens": 0,
|
|
},
|
|
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
|
|
}
|
|
|
|
|
|
def test_convert_streaming_chunk_to_chat_message_two_tool_calls_in_same_chunk():
|
|
chunks = [
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "mistral-small-latest",
|
|
"index": 0,
|
|
"tool_calls": None,
|
|
"finish_reason": None,
|
|
"usage": None,
|
|
},
|
|
component_info=ComponentInfo(
|
|
type="haystack_integrations.components.generators.mistral.chat.chat_generator.MistralChatGenerator",
|
|
name=None,
|
|
),
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "mistral-small-latest",
|
|
"index": 0,
|
|
"finish_reason": "tool_calls",
|
|
"usage": {
|
|
"completion_tokens": 35,
|
|
"prompt_tokens": 77,
|
|
"total_tokens": 112,
|
|
"completion_tokens_details": None,
|
|
"prompt_tokens_details": None,
|
|
},
|
|
},
|
|
component_info=ComponentInfo(
|
|
type="haystack_integrations.components.generators.mistral.chat.chat_generator.MistralChatGenerator",
|
|
name=None,
|
|
),
|
|
index=0,
|
|
tool_calls=[
|
|
ToolCallDelta(index=0, tool_name="weather", arguments='{"city": "Paris"}', id="FL1FFlqUG"),
|
|
ToolCallDelta(index=1, tool_name="weather", arguments='{"city": "Berlin"}', id="xSuhp66iB"),
|
|
],
|
|
start=True,
|
|
finish_reason="tool_calls",
|
|
),
|
|
]
|
|
|
|
# Convert chunks to a chat message
|
|
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
|
|
|
|
assert not result.texts
|
|
assert not result.text
|
|
|
|
# Verify both tool calls were found and processed
|
|
assert len(result.tool_calls) == 2
|
|
assert result.tool_calls[0].id == "FL1FFlqUG"
|
|
assert result.tool_calls[0].tool_name == "weather"
|
|
assert result.tool_calls[0].arguments == {"city": "Paris"}
|
|
assert result.tool_calls[1].id == "xSuhp66iB"
|
|
assert result.tool_calls[1].tool_name == "weather"
|
|
assert result.tool_calls[1].arguments == {"city": "Berlin"}
|
|
|
|
|
|
def test_convert_streaming_chunk_to_chat_message_empty_tool_call_delta():
|
|
chunks = [
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": None,
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.910076",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0,
|
|
id="call_ZOj5l67zhZOx6jqjg7ATQwb6",
|
|
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
|
|
arguments='{"query":', name="rag_pipeline_tool"
|
|
),
|
|
type="function",
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.913919",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
start=True,
|
|
tool_calls=[
|
|
ToolCallDelta(
|
|
id="call_ZOj5l67zhZOx6jqjg7ATQwb6", tool_name="rag_pipeline_tool", arguments='{"query":', index=0
|
|
)
|
|
],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0,
|
|
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
|
|
arguments=' "Where does Mark live?"}'
|
|
),
|
|
)
|
|
],
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.924420",
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(arguments=' "Where does Mark live?"}', index=0)],
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": [
|
|
chat_completion_chunk.ChoiceDeltaToolCall(
|
|
index=0, function=chat_completion_chunk.ChoiceDeltaToolCallFunction()
|
|
)
|
|
],
|
|
"finish_reason": "tool_calls",
|
|
"received_at": "2025-02-19T16:02:55.948772",
|
|
},
|
|
tool_calls=[ToolCallDelta(index=0)],
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
finish_reason="tool_calls",
|
|
index=0,
|
|
),
|
|
StreamingChunk(
|
|
content="",
|
|
meta={
|
|
"model": "gpt-4o-mini-2024-07-18",
|
|
"index": 0,
|
|
"tool_calls": None,
|
|
"finish_reason": None,
|
|
"received_at": "2025-02-19T16:02:55.948772",
|
|
"usage": {
|
|
"completion_tokens": 42,
|
|
"prompt_tokens": 282,
|
|
"total_tokens": 324,
|
|
"completion_tokens_details": {
|
|
"accepted_prediction_tokens": 0,
|
|
"audio_tokens": 0,
|
|
"reasoning_tokens": 0,
|
|
"rejected_prediction_tokens": 0,
|
|
},
|
|
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
|
|
},
|
|
},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
),
|
|
]
|
|
|
|
# Convert chunks to a chat message
|
|
result = _convert_streaming_chunks_to_chat_message(chunks=chunks)
|
|
|
|
assert not result.texts
|
|
assert not result.text
|
|
|
|
# Verify both tool calls were found and processed
|
|
assert len(result.tool_calls) == 1
|
|
assert result.tool_calls[0].id == "call_ZOj5l67zhZOx6jqjg7ATQwb6"
|
|
assert result.tool_calls[0].tool_name == "rag_pipeline_tool"
|
|
assert result.tool_calls[0].arguments == {"query": "Where does Mark live?"}
|
|
assert result.meta["finish_reason"] == "tool_calls"
|
|
|
|
|
|
def test_print_streaming_chunk_content_only():
|
|
chunk = StreamingChunk(
|
|
content="Hello, world!",
|
|
meta={"model": "test-model"},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
start=True,
|
|
)
|
|
with patch("builtins.print") as mock_print:
|
|
print_streaming_chunk(chunk)
|
|
expected_calls = [call("[ASSISTANT]\n", flush=True, end=""), call("Hello, world!", flush=True, end="")]
|
|
mock_print.assert_has_calls(expected_calls)
|
|
|
|
|
|
def test_print_streaming_chunk_tool_call():
|
|
chunk = StreamingChunk(
|
|
content="",
|
|
meta={"model": "test-model"},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
start=True,
|
|
index=0,
|
|
tool_calls=[ToolCallDelta(id="call_123", tool_name="test_tool", arguments='{"param": "value"}', index=0)],
|
|
)
|
|
with patch("builtins.print") as mock_print:
|
|
print_streaming_chunk(chunk)
|
|
expected_calls = [
|
|
call("[TOOL CALL]\nTool: test_tool \nArguments: ", flush=True, end=""),
|
|
call('{"param": "value"}', flush=True, end=""),
|
|
]
|
|
mock_print.assert_has_calls(expected_calls)
|
|
|
|
|
|
def test_print_streaming_chunk_tool_call_result():
|
|
chunk = StreamingChunk(
|
|
content="",
|
|
meta={"model": "test-model"},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
index=0,
|
|
tool_call_result=ToolCallResult(
|
|
result="Tool execution completed successfully",
|
|
origin=ToolCall(id="call_123", tool_name="test_tool", arguments={}),
|
|
error=False,
|
|
),
|
|
)
|
|
with patch("builtins.print") as mock_print:
|
|
print_streaming_chunk(chunk)
|
|
expected_calls = [call("[TOOL RESULT]\nTool execution completed successfully", flush=True, end="")]
|
|
mock_print.assert_has_calls(expected_calls)
|
|
|
|
|
|
def test_print_streaming_chunk_with_finish_reason():
|
|
chunk = StreamingChunk(
|
|
content="Final content.",
|
|
meta={"model": "test-model"},
|
|
component_info=ComponentInfo(name="test", type="test"),
|
|
start=True,
|
|
finish_reason="stop",
|
|
)
|
|
with patch("builtins.print") as mock_print:
|
|
print_streaming_chunk(chunk)
|
|
expected_calls = [
|
|
call("[ASSISTANT]\n", flush=True, end=""),
|
|
call("Final content.", flush=True, end=""),
|
|
call("\n\n", flush=True, end=""),
|
|
]
|
|
mock_print.assert_has_calls(expected_calls)
|
|
|
|
|
|
def test_print_streaming_chunk_empty_chunk():
|
|
chunk = StreamingChunk(
|
|
content="", meta={"model": "test-model"}, component_info=ComponentInfo(name="test", type="test")
|
|
)
|
|
with patch("builtins.print") as mock_print:
|
|
print_streaming_chunk(chunk)
|
|
mock_print.assert_not_called()
|