mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-03 23:19:20 +00:00
387 lines
16 KiB
Python
387 lines
16 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
import os
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import random
|
|
import pytest
|
|
from huggingface_hub.utils import RepositoryNotFoundError
|
|
|
|
from numpy import array
|
|
|
|
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
|
|
from haystack.dataclasses import Document
|
|
from haystack.utils.auth import Secret
|
|
from haystack.utils.hf import HFEmbeddingAPIType
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_check_valid_model():
|
|
with patch(
|
|
"haystack.components.embedders.hugging_face_api_document_embedder.check_valid_model",
|
|
MagicMock(return_value=None),
|
|
) as mock:
|
|
yield mock
|
|
|
|
|
|
def mock_embedding_generation(text, **kwargs):
|
|
response = array([[random.random() for _ in range(384)] for _ in range(len(text))])
|
|
return response
|
|
|
|
|
|
class TestHuggingFaceAPIDocumentEmbedder:
|
|
def test_init_invalid_api_type(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPIDocumentEmbedder(api_type="invalid_api_type", api_params={})
|
|
|
|
def test_init_serverless(self, mock_check_valid_model):
|
|
model = "BAAI/bge-small-en-v1.5"
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": model}
|
|
)
|
|
|
|
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
|
|
assert embedder.api_params == {"model": model}
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
assert embedder.truncate
|
|
assert not embedder.normalize
|
|
assert embedder.batch_size == 32
|
|
assert embedder.progress_bar
|
|
assert embedder.meta_fields_to_embed == []
|
|
assert embedder.embedding_separator == "\n"
|
|
|
|
def test_init_serverless_invalid_model(self, mock_check_valid_model):
|
|
mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id")
|
|
with pytest.raises(RepositoryNotFoundError):
|
|
HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "invalid_model_id"}
|
|
)
|
|
|
|
def test_init_serverless_no_model(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"param": "irrelevant"}
|
|
)
|
|
|
|
def test_init_tei(self):
|
|
url = "https://some_model.com"
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": url}
|
|
)
|
|
|
|
assert embedder.api_type == HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE
|
|
assert embedder.api_params == {"url": url}
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
assert embedder.truncate
|
|
assert not embedder.normalize
|
|
assert embedder.batch_size == 32
|
|
assert embedder.progress_bar
|
|
assert embedder.meta_fields_to_embed == []
|
|
assert embedder.embedding_separator == "\n"
|
|
|
|
def test_init_tei_invalid_url(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": "invalid_url"}
|
|
)
|
|
|
|
def test_init_tei_no_url(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"param": "irrelevant"}
|
|
)
|
|
|
|
def test_to_dict(self, mock_check_valid_model):
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
prefix="prefix",
|
|
suffix="suffix",
|
|
truncate=False,
|
|
normalize=True,
|
|
batch_size=128,
|
|
progress_bar=False,
|
|
meta_fields_to_embed=["meta_field"],
|
|
embedding_separator=" ",
|
|
)
|
|
|
|
data = embedder.to_dict()
|
|
|
|
assert data == {
|
|
"type": "haystack.components.embedders.hugging_face_api_document_embedder.HuggingFaceAPIDocumentEmbedder",
|
|
"init_parameters": {
|
|
"api_type": "serverless_inference_api",
|
|
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
|
|
"token": {"env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False, "type": "env_var"},
|
|
"prefix": "prefix",
|
|
"suffix": "suffix",
|
|
"truncate": False,
|
|
"normalize": True,
|
|
"batch_size": 128,
|
|
"progress_bar": False,
|
|
"meta_fields_to_embed": ["meta_field"],
|
|
"embedding_separator": " ",
|
|
},
|
|
}
|
|
|
|
def test_from_dict(self, mock_check_valid_model):
|
|
data = {
|
|
"type": "haystack.components.embedders.hugging_face_api_document_embedder.HuggingFaceAPIDocumentEmbedder",
|
|
"init_parameters": {
|
|
"api_type": HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
|
|
"token": {"env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False, "type": "env_var"},
|
|
"prefix": "prefix",
|
|
"suffix": "suffix",
|
|
"truncate": False,
|
|
"normalize": True,
|
|
"batch_size": 128,
|
|
"progress_bar": False,
|
|
"meta_fields_to_embed": ["meta_field"],
|
|
"embedding_separator": " ",
|
|
},
|
|
}
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder.from_dict(data)
|
|
|
|
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
|
|
assert embedder.api_params == {"model": "BAAI/bge-small-en-v1.5"}
|
|
assert embedder.prefix == "prefix"
|
|
assert embedder.suffix == "suffix"
|
|
assert not embedder.truncate
|
|
assert embedder.normalize
|
|
assert embedder.batch_size == 128
|
|
assert not embedder.progress_bar
|
|
assert embedder.meta_fields_to_embed == ["meta_field"]
|
|
assert embedder.embedding_separator == " "
|
|
|
|
def test_prepare_texts_to_embed_w_metadata(self):
|
|
documents = [
|
|
Document(content=f"document number {i}: content", meta={"meta_field": f"meta_value {i}"}) for i in range(5)
|
|
]
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE,
|
|
api_params={"url": "https://some_model.com"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
meta_fields_to_embed=["meta_field"],
|
|
embedding_separator=" | ",
|
|
)
|
|
|
|
prepared_texts = embedder._prepare_texts_to_embed(documents)
|
|
|
|
assert prepared_texts == [
|
|
"meta_value 0 | document number 0: content",
|
|
"meta_value 1 | document number 1: content",
|
|
"meta_value 2 | document number 2: content",
|
|
"meta_value 3 | document number 3: content",
|
|
"meta_value 4 | document number 4: content",
|
|
]
|
|
|
|
def test_prepare_texts_to_embed_w_suffix(self, mock_check_valid_model):
|
|
documents = [Document(content=f"document number {i}") for i in range(5)]
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE,
|
|
api_params={"url": "https://some_model.com"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
prefix="my_prefix ",
|
|
suffix=" my_suffix",
|
|
)
|
|
|
|
prepared_texts = embedder._prepare_texts_to_embed(documents)
|
|
|
|
assert prepared_texts == [
|
|
"my_prefix document number 0 my_suffix",
|
|
"my_prefix document number 1 my_suffix",
|
|
"my_prefix document number 2 my_suffix",
|
|
"my_prefix document number 3 my_suffix",
|
|
"my_prefix document number 4 my_suffix",
|
|
]
|
|
|
|
def test_embed_batch(self, mock_check_valid_model, caplog):
|
|
texts = ["text 1", "text 2", "text 3", "text 4", "text 5"]
|
|
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.side_effect = mock_embedding_generation
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
)
|
|
embeddings = embedder._embed_batch(texts_to_embed=texts, batch_size=2)
|
|
|
|
assert mock_embedding_patch.call_count == 3
|
|
|
|
assert isinstance(embeddings, list)
|
|
assert len(embeddings) == len(texts)
|
|
for embedding in embeddings:
|
|
assert isinstance(embedding, list)
|
|
assert len(embedding) == 384
|
|
assert all(isinstance(x, float) for x in embedding)
|
|
|
|
# Check that logger warnings about ignoring truncate and normalize are raised
|
|
assert len(caplog.records) == 2
|
|
assert "truncate" in caplog.records[0].message
|
|
assert "normalize" in caplog.records[1].message
|
|
|
|
def test_embed_batch_wrong_embedding_shape(self, mock_check_valid_model):
|
|
texts = ["text 1", "text 2", "text 3", "text 4", "text 5"]
|
|
|
|
# embedding ndim != 2
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.return_value = array([0.1, 0.2, 0.3])
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
embedder._embed_batch(texts_to_embed=texts, batch_size=2)
|
|
|
|
# embedding ndim == 2 but shape[0] != len(batch)
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.return_value = array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]])
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
embedder._embed_batch(texts_to_embed=texts, batch_size=2)
|
|
|
|
def test_run_wrong_input_format(self, mock_check_valid_model):
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
|
|
)
|
|
|
|
list_integers_input = [1, 2, 3]
|
|
|
|
with pytest.raises(TypeError):
|
|
embedder.run(text=list_integers_input)
|
|
|
|
def test_run_on_empty_list(self, mock_check_valid_model):
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
)
|
|
|
|
empty_list_input = []
|
|
result = embedder.run(documents=empty_list_input)
|
|
|
|
assert result["documents"] is not None
|
|
assert not result["documents"] # empty list
|
|
|
|
def test_run(self, mock_check_valid_model):
|
|
docs = [
|
|
Document(content="I love cheese", meta={"topic": "Cuisine"}),
|
|
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
|
|
]
|
|
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.side_effect = mock_embedding_generation
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
prefix="prefix ",
|
|
suffix=" suffix",
|
|
meta_fields_to_embed=["topic"],
|
|
embedding_separator=" | ",
|
|
)
|
|
|
|
result = embedder.run(documents=docs)
|
|
|
|
mock_embedding_patch.assert_called_once_with(
|
|
text=[
|
|
"prefix Cuisine | I love cheese suffix",
|
|
"prefix ML | A transformer is a deep learning architecture suffix",
|
|
],
|
|
truncate=None,
|
|
normalize=None,
|
|
)
|
|
|
|
documents_with_embeddings = result["documents"]
|
|
|
|
assert isinstance(documents_with_embeddings, list)
|
|
assert len(documents_with_embeddings) == len(docs)
|
|
for doc in documents_with_embeddings:
|
|
assert isinstance(doc, Document)
|
|
assert isinstance(doc.embedding, list)
|
|
assert len(doc.embedding) == 384
|
|
assert all(isinstance(x, float) for x in doc.embedding)
|
|
|
|
def test_run_custom_batch_size(self, mock_check_valid_model):
|
|
docs = [
|
|
Document(content="I love cheese", meta={"topic": "Cuisine"}),
|
|
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
|
|
]
|
|
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.side_effect = mock_embedding_generation
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
prefix="prefix ",
|
|
suffix=" suffix",
|
|
meta_fields_to_embed=["topic"],
|
|
embedding_separator=" | ",
|
|
batch_size=1,
|
|
)
|
|
|
|
result = embedder.run(documents=docs)
|
|
|
|
assert mock_embedding_patch.call_count == 2
|
|
|
|
documents_with_embeddings = result["documents"]
|
|
|
|
assert isinstance(documents_with_embeddings, list)
|
|
assert len(documents_with_embeddings) == len(docs)
|
|
for doc in documents_with_embeddings:
|
|
assert isinstance(doc, Document)
|
|
assert isinstance(doc.embedding, list)
|
|
assert len(doc.embedding) == 384
|
|
assert all(isinstance(x, float) for x in doc.embedding)
|
|
|
|
@pytest.mark.flaky(reruns=5, reruns_delay=5)
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("HF_API_TOKEN", None),
|
|
reason="Export an env var called HF_API_TOKEN containing the Hugging Face token to run this test.",
|
|
)
|
|
def test_live_run_serverless(self):
|
|
docs = [
|
|
Document(content="I love cheese", meta={"topic": "Cuisine"}),
|
|
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
|
|
]
|
|
|
|
embedder = HuggingFaceAPIDocumentEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "sentence-transformers/all-MiniLM-L6-v2"},
|
|
meta_fields_to_embed=["topic"],
|
|
embedding_separator=" | ",
|
|
)
|
|
result = embedder.run(documents=docs)
|
|
documents_with_embeddings = result["documents"]
|
|
|
|
assert isinstance(documents_with_embeddings, list)
|
|
assert len(documents_with_embeddings) == len(docs)
|
|
for doc in documents_with_embeddings:
|
|
assert isinstance(doc, Document)
|
|
assert isinstance(doc.embedding, list)
|
|
assert len(doc.embedding) == 384
|
|
assert all(isinstance(x, float) for x in doc.embedding)
|