haystack/test/components/embedders/test_hugging_face_api_text_embedder.py
Stefano Fiorucci 1c1030efc6
chore: make Haystack warnings consistent (#9083)
* chore: make Haystack warnings consistent

* more structured logging

* small fixes
2025-03-21 18:18:55 +01:00

203 lines
8.1 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import os
from unittest.mock import MagicMock, patch
import random
import pytest
from huggingface_hub.utils import RepositoryNotFoundError
from numpy import array
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils.auth import Secret
from haystack.utils.hf import HFEmbeddingAPIType
@pytest.fixture
def mock_check_valid_model():
with patch(
"haystack.components.embedders.hugging_face_api_text_embedder.check_valid_model", MagicMock(return_value=None)
) as mock:
yield mock
class TestHuggingFaceAPITextEmbedder:
def test_init_invalid_api_type(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(api_type="invalid_api_type", api_params={})
def test_init_serverless(self, mock_check_valid_model):
model = "BAAI/bge-small-en-v1.5"
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": model}
)
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
assert embedder.api_params == {"model": model}
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.truncate
assert not embedder.normalize
def test_init_serverless_invalid_model(self, mock_check_valid_model):
mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id")
with pytest.raises(RepositoryNotFoundError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "invalid_model_id"}
)
def test_init_serverless_no_model(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"param": "irrelevant"}
)
def test_init_tei(self):
url = "https://some_model.com"
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": url}
)
assert embedder.api_type == HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE
assert embedder.api_params == {"url": url}
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.truncate
assert not embedder.normalize
def test_init_tei_invalid_url(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": "invalid_url"}
)
def test_init_tei_no_url(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"param": "irrelevant"}
)
def test_to_dict(self, mock_check_valid_model):
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
api_params={"model": "BAAI/bge-small-en-v1.5"},
prefix="prefix",
suffix="suffix",
truncate=False,
normalize=True,
)
data = embedder.to_dict()
assert data == {
"type": "haystack.components.embedders.hugging_face_api_text_embedder.HuggingFaceAPITextEmbedder",
"init_parameters": {
"api_type": "serverless_inference_api",
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
"token": {"env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False, "type": "env_var"},
"prefix": "prefix",
"suffix": "suffix",
"truncate": False,
"normalize": True,
},
}
def test_from_dict(self, mock_check_valid_model):
data = {
"type": "haystack.components.embedders.hugging_face_api_text_embedder.HuggingFaceAPITextEmbedder",
"init_parameters": {
"api_type": HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
"token": {"env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False, "type": "env_var"},
"prefix": "prefix",
"suffix": "suffix",
"truncate": False,
"normalize": True,
},
}
embedder = HuggingFaceAPITextEmbedder.from_dict(data)
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
assert embedder.api_params == {"model": "BAAI/bge-small-en-v1.5"}
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
assert not embedder.truncate
assert embedder.normalize
def test_run_wrong_input_format(self, mock_check_valid_model):
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
)
list_integers_input = [1, 2, 3]
with pytest.raises(TypeError):
embedder.run(text=list_integers_input)
def test_run(self, mock_check_valid_model, caplog):
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
mock_embedding_patch.return_value = array([[random.random() for _ in range(384)]])
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("fake-api-token"),
prefix="prefix ",
suffix=" suffix",
)
result = embedder.run(text="The food was delicious")
mock_embedding_patch.assert_called_once_with(
text="prefix The food was delicious suffix", truncate=None, normalize=None
)
assert len(result["embedding"]) == 384
assert all(isinstance(x, float) for x in result["embedding"])
# Check that warnings about ignoring truncate and normalize are raised
assert len(caplog.records) == 2
assert "truncate" in caplog.records[0].message
assert "normalize" in caplog.records[1].message
def test_run_wrong_embedding_shape(self, mock_check_valid_model):
# embedding ndim > 2
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
mock_embedding_patch.return_value = array([[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]])
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
)
with pytest.raises(ValueError):
embedder.run(text="The food was delicious")
# embedding ndim == 2 but shape[0] != 1
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
mock_embedding_patch.return_value = array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
)
with pytest.raises(ValueError):
embedder.run(text="The food was delicious")
@pytest.mark.flaky(reruns=5, reruns_delay=5)
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("HF_API_TOKEN", None),
reason="Export an env var called HF_API_TOKEN containing the Hugging Face token to run this test.",
)
def test_live_run_serverless(self):
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
api_params={"model": "sentence-transformers/all-MiniLM-L6-v2"},
)
result = embedder.run(text="The food was delicious")
assert len(result["embedding"]) == 384
assert all(isinstance(x, float) for x in result["embedding"])