mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-06-26 22:00:13 +00:00
203 lines
8.1 KiB
Python
203 lines
8.1 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
import os
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import random
|
|
import pytest
|
|
from huggingface_hub.utils import RepositoryNotFoundError
|
|
from numpy import array
|
|
from haystack.components.embedders import HuggingFaceAPITextEmbedder
|
|
from haystack.utils.auth import Secret
|
|
from haystack.utils.hf import HFEmbeddingAPIType
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_check_valid_model():
|
|
with patch(
|
|
"haystack.components.embedders.hugging_face_api_text_embedder.check_valid_model", MagicMock(return_value=None)
|
|
) as mock:
|
|
yield mock
|
|
|
|
|
|
class TestHuggingFaceAPITextEmbedder:
|
|
def test_init_invalid_api_type(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPITextEmbedder(api_type="invalid_api_type", api_params={})
|
|
|
|
def test_init_serverless(self, mock_check_valid_model):
|
|
model = "BAAI/bge-small-en-v1.5"
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": model}
|
|
)
|
|
|
|
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
|
|
assert embedder.api_params == {"model": model}
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
assert embedder.truncate
|
|
assert not embedder.normalize
|
|
|
|
def test_init_serverless_invalid_model(self, mock_check_valid_model):
|
|
mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id")
|
|
with pytest.raises(RepositoryNotFoundError):
|
|
HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "invalid_model_id"}
|
|
)
|
|
|
|
def test_init_serverless_no_model(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"param": "irrelevant"}
|
|
)
|
|
|
|
def test_init_tei(self):
|
|
url = "https://some_model.com"
|
|
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": url}
|
|
)
|
|
|
|
assert embedder.api_type == HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE
|
|
assert embedder.api_params == {"url": url}
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
assert embedder.truncate
|
|
assert not embedder.normalize
|
|
|
|
def test_init_tei_invalid_url(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": "invalid_url"}
|
|
)
|
|
|
|
def test_init_tei_no_url(self):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"param": "irrelevant"}
|
|
)
|
|
|
|
def test_to_dict(self, mock_check_valid_model):
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
prefix="prefix",
|
|
suffix="suffix",
|
|
truncate=False,
|
|
normalize=True,
|
|
)
|
|
|
|
data = embedder.to_dict()
|
|
|
|
assert data == {
|
|
"type": "haystack.components.embedders.hugging_face_api_text_embedder.HuggingFaceAPITextEmbedder",
|
|
"init_parameters": {
|
|
"api_type": "serverless_inference_api",
|
|
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
|
|
"token": {"env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False, "type": "env_var"},
|
|
"prefix": "prefix",
|
|
"suffix": "suffix",
|
|
"truncate": False,
|
|
"normalize": True,
|
|
},
|
|
}
|
|
|
|
def test_from_dict(self, mock_check_valid_model):
|
|
data = {
|
|
"type": "haystack.components.embedders.hugging_face_api_text_embedder.HuggingFaceAPITextEmbedder",
|
|
"init_parameters": {
|
|
"api_type": HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
|
|
"token": {"env_vars": ["HF_API_TOKEN", "HF_TOKEN"], "strict": False, "type": "env_var"},
|
|
"prefix": "prefix",
|
|
"suffix": "suffix",
|
|
"truncate": False,
|
|
"normalize": True,
|
|
},
|
|
}
|
|
|
|
embedder = HuggingFaceAPITextEmbedder.from_dict(data)
|
|
|
|
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
|
|
assert embedder.api_params == {"model": "BAAI/bge-small-en-v1.5"}
|
|
assert embedder.prefix == "prefix"
|
|
assert embedder.suffix == "suffix"
|
|
assert not embedder.truncate
|
|
assert embedder.normalize
|
|
|
|
def test_run_wrong_input_format(self, mock_check_valid_model):
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
|
|
)
|
|
|
|
list_integers_input = [1, 2, 3]
|
|
|
|
with pytest.raises(TypeError):
|
|
embedder.run(text=list_integers_input)
|
|
|
|
def test_run(self, mock_check_valid_model, caplog):
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.return_value = array([[random.random() for _ in range(384)]])
|
|
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "BAAI/bge-small-en-v1.5"},
|
|
token=Secret.from_token("fake-api-token"),
|
|
prefix="prefix ",
|
|
suffix=" suffix",
|
|
)
|
|
|
|
result = embedder.run(text="The food was delicious")
|
|
|
|
mock_embedding_patch.assert_called_once_with(
|
|
text="prefix The food was delicious suffix", truncate=None, normalize=None
|
|
)
|
|
|
|
assert len(result["embedding"]) == 384
|
|
assert all(isinstance(x, float) for x in result["embedding"])
|
|
|
|
# Check that warnings about ignoring truncate and normalize are raised
|
|
assert len(caplog.records) == 2
|
|
assert "truncate" in caplog.records[0].message
|
|
assert "normalize" in caplog.records[1].message
|
|
|
|
def test_run_wrong_embedding_shape(self, mock_check_valid_model):
|
|
# embedding ndim > 2
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.return_value = array([[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]])
|
|
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
embedder.run(text="The food was delicious")
|
|
|
|
# embedding ndim == 2 but shape[0] != 1
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.return_value = array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
|
|
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
embedder.run(text="The food was delicious")
|
|
|
|
@pytest.mark.flaky(reruns=5, reruns_delay=5)
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("HF_API_TOKEN", None),
|
|
reason="Export an env var called HF_API_TOKEN containing the Hugging Face token to run this test.",
|
|
)
|
|
def test_live_run_serverless(self):
|
|
embedder = HuggingFaceAPITextEmbedder(
|
|
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
|
|
api_params={"model": "sentence-transformers/all-MiniLM-L6-v2"},
|
|
)
|
|
result = embedder.run(text="The food was delicious")
|
|
|
|
assert len(result["embedding"]) == 384
|
|
assert all(isinstance(x, float) for x in result["embedding"])
|