mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-11 10:07:50 +00:00

* Refactor prompt structure * Refactor prompt tests structure * Fix pylint * Move TestPromptTemplateSyntax to test_prompt_template.py
1123 lines
46 KiB
Python
1123 lines
46 KiB
Python
import os
|
||
import logging
|
||
from typing import Optional, Union, List, Dict, Any, Tuple
|
||
|
||
import pytest
|
||
|
||
from haystack import Document, Pipeline, BaseComponent, MultiLabel
|
||
from haystack.errors import OpenAIError
|
||
from haystack.nodes.prompt import PromptTemplate, PromptNode, PromptModel
|
||
from haystack.nodes.prompt import PromptModelInvocationLayer
|
||
from haystack.nodes.prompt.providers import HFLocalInvocationLayer, TokenStreamingHandler
|
||
|
||
|
||
def skip_test_for_invalid_key(prompt_model):
|
||
if prompt_model.api_key is not None and prompt_model.api_key == "KEY_NOT_FOUND":
|
||
pytest.skip("No API key found, skipping test")
|
||
|
||
|
||
class TestTokenStreamingHandler(TokenStreamingHandler):
|
||
stream_handler_invoked = False
|
||
|
||
def __call__(self, token_received, *args, **kwargs) -> str:
|
||
"""
|
||
This callback method is called when a new token is received from the stream.
|
||
|
||
:param token_received: The token received from the stream.
|
||
:param kwargs: Additional keyword arguments passed to the underlying model.
|
||
:return: The token to be sent to the stream.
|
||
"""
|
||
self.stream_handler_invoked = True
|
||
return token_received
|
||
|
||
|
||
class CustomInvocationLayer(PromptModelInvocationLayer):
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
def invoke(self, *args, **kwargs):
|
||
return ["fake_response"]
|
||
|
||
def _ensure_token_limit(self, prompt: str) -> str:
|
||
return prompt
|
||
|
||
@classmethod
|
||
def supports(cls, model_name_or_path: str, **kwargs) -> bool:
|
||
return model_name_or_path == "fake_model"
|
||
|
||
|
||
@pytest.fixture
|
||
def get_api_key(request):
|
||
if request.param == "openai":
|
||
return os.environ.get("OPENAI_API_KEY", None)
|
||
elif request.param == "azure":
|
||
return os.environ.get("AZURE_OPENAI_API_KEY", None)
|
||
|
||
|
||
@pytest.mark.unit
|
||
def test_prompt_node_with_custom_invocation_layer():
|
||
model = PromptModel("fake_model")
|
||
pn = PromptNode(model_name_or_path=model)
|
||
output = pn("Some fake invocation")
|
||
|
||
assert output == ["fake_response"]
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_create_prompt_node():
|
||
prompt_node = PromptNode()
|
||
assert prompt_node is not None
|
||
assert prompt_node.prompt_model is not None
|
||
|
||
prompt_node = PromptNode("google/flan-t5-small")
|
||
assert prompt_node is not None
|
||
assert prompt_node.model_name_or_path == "google/flan-t5-small"
|
||
assert prompt_node.prompt_model is not None
|
||
|
||
with pytest.raises(OpenAIError):
|
||
# davinci selected but no API key provided
|
||
prompt_node = PromptNode("text-davinci-003")
|
||
|
||
prompt_node = PromptNode("text-davinci-003", api_key="no need to provide a real key")
|
||
assert prompt_node is not None
|
||
assert prompt_node.model_name_or_path == "text-davinci-003"
|
||
assert prompt_node.prompt_model is not None
|
||
|
||
with pytest.raises(ValueError, match="Model some-random-model is not supported"):
|
||
PromptNode("some-random-model")
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_add_and_remove_template(prompt_node):
|
||
num_default_tasks = len(prompt_node.get_prompt_template_names())
|
||
custom_task = PromptTemplate(name="custom-task", prompt_text="Custom task: {param1}, {param2}")
|
||
prompt_node.add_prompt_template(custom_task)
|
||
assert len(prompt_node.get_prompt_template_names()) == num_default_tasks + 1
|
||
assert "custom-task" in prompt_node.get_prompt_template_names()
|
||
|
||
assert prompt_node.remove_prompt_template("custom-task") is not None
|
||
assert "custom-task" not in prompt_node.get_prompt_template_names()
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_add_template_and_invoke(prompt_node):
|
||
tt = PromptTemplate(
|
||
name="sentiment-analysis-new",
|
||
prompt_text="Please give a sentiment for this context. Answer with positive, "
|
||
"negative or neutral. Context: {documents}; Answer:",
|
||
)
|
||
prompt_node.add_prompt_template(tt)
|
||
|
||
r = prompt_node.prompt("sentiment-analysis-new", documents=["Berlin is an amazing city."])
|
||
assert r[0].casefold() == "positive"
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_on_the_fly_prompt(prompt_node):
|
||
prompt_template = PromptTemplate(
|
||
name="sentiment-analysis-temp",
|
||
prompt_text="Please give a sentiment for this context. Answer with positive, "
|
||
"negative or neutral. Context: {documents}; Answer:",
|
||
)
|
||
r = prompt_node.prompt(prompt_template, documents=["Berlin is an amazing city."])
|
||
assert r[0].casefold() == "positive"
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_direct_prompting(prompt_node):
|
||
r = prompt_node("What is the capital of Germany?")
|
||
assert r[0].casefold() == "berlin"
|
||
|
||
r = prompt_node("What is the capital of Germany?", "What is the secret of universe?")
|
||
assert r[0].casefold() == "berlin"
|
||
assert len(r[1]) > 0
|
||
|
||
r = prompt_node("Capital of Germany is Berlin", task="question-generation")
|
||
assert len(r[0]) > 10 and "Germany" in r[0]
|
||
|
||
r = prompt_node(["Capital of Germany is Berlin", "Capital of France is Paris"], task="question-generation")
|
||
assert len(r) == 2
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_question_generation(prompt_node):
|
||
r = prompt_node.prompt("question-generation", documents=["Berlin is the capital of Germany."])
|
||
assert len(r) == 1 and len(r[0]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_template_selection(prompt_node):
|
||
qa = prompt_node.set_default_prompt_template("question-answering-per-document")
|
||
r = qa(
|
||
["Berlin is the capital of Germany.", "Paris is the capital of France."],
|
||
["What is the capital of Germany?", "What is the capital of France"],
|
||
)
|
||
assert r[0].answer.casefold() == "berlin" and r[1].answer.casefold() == "paris"
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_has_supported_template_names(prompt_node):
|
||
assert len(prompt_node.get_prompt_template_names()) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_invalid_template_params(prompt_node):
|
||
with pytest.raises(ValueError, match="Expected prompt parameters"):
|
||
prompt_node.prompt("question-answering-per-document", {"some_crazy_key": "Berlin is the capital of Germany."})
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_wrong_template_params(prompt_node):
|
||
with pytest.raises(ValueError, match="Expected prompt parameters"):
|
||
# with don't have options param, multiple choice QA has
|
||
prompt_node.prompt("question-answering-per-document", options=["Berlin is the capital of Germany."])
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_run_invalid_template(prompt_node):
|
||
with pytest.raises(ValueError, match="invalid-task not supported"):
|
||
prompt_node.prompt("invalid-task", {})
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_invalid_prompting(prompt_node):
|
||
with pytest.raises(ValueError, match="Hey there, what is the best city in the"):
|
||
prompt_node.prompt(["Hey there, what is the best city in the world?", "Hey, answer me!"])
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_prompt_at_query_time(prompt_node: PromptNode):
|
||
results = prompt_node.prompt("Hey there, what is the best city in the world?")
|
||
assert len(results) == 1
|
||
assert isinstance(results[0], str)
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_invalid_state_ops(prompt_node):
|
||
with pytest.raises(ValueError, match="Prompt template no_such_task_exists"):
|
||
prompt_node.remove_prompt_template("no_such_task_exists")
|
||
# remove default task
|
||
prompt_node.remove_prompt_template("question-answering-per-document")
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["openai", "azure"], indirect=True)
|
||
def test_open_ai_prompt_with_params(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
pn = PromptNode(prompt_model)
|
||
optional_davinci_params = {"temperature": 0.5, "max_tokens": 10, "top_p": 1, "frequency_penalty": 0.5}
|
||
r = pn.prompt("question-generation", documents=["Berlin is the capital of Germany."], **optional_davinci_params)
|
||
assert len(r) == 1 and len(r[0]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_open_ai_prompt_with_default_params(azure_conf):
|
||
if not azure_conf:
|
||
pytest.skip("No Azure API key found, skipping test")
|
||
model_kwargs = {"temperature": 0.5, "max_tokens": 2, "top_p": 1, "frequency_penalty": 0.5}
|
||
model_kwargs.update(azure_conf)
|
||
pn = PromptNode(model_name_or_path="text-davinci-003", api_key=azure_conf["api_key"], model_kwargs=model_kwargs)
|
||
result = pn.prompt("question-generation", documents=["Berlin is the capital of Germany."])
|
||
assert len(result) == 1 and len(result[0]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["openai", "azure"], indirect=True)
|
||
def test_open_ai_warn_if_max_tokens_is_too_short(prompt_model, caplog):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
pn = PromptNode(prompt_model)
|
||
optional_davinci_params = {"temperature": 0.5, "max_tokens": 2, "top_p": 1, "frequency_penalty": 0.5}
|
||
with caplog.at_level(logging.WARNING):
|
||
_ = pn.prompt("question-generation", documents=["Berlin is the capital of Germany."], **optional_davinci_params)
|
||
assert "Increase the max_tokens parameter to allow for longer completions." in caplog.text
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_stop_words(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
# test stop words for both HF and OpenAI
|
||
# set stop words in PromptNode
|
||
node = PromptNode(prompt_model, stop_words=["capital", "Germany"])
|
||
|
||
# with default prompt template and stop words set in PN
|
||
r = node.prompt("question-generation", documents=["Berlin is the capital of Germany."])
|
||
assert r[0] == "What is the" or r[0] == "What city is the"
|
||
|
||
# with default prompt template and stop words set in kwargs (overrides PN stop words)
|
||
r = node.prompt("question-generation", documents=["Berlin is the capital of Germany."], stop_words=None)
|
||
assert "capital" in r[0] or "Germany" in r[0]
|
||
|
||
# simple prompting
|
||
r = node("Given the context please generate a question. Context: Berlin is the capital of Germany.; Question:")
|
||
assert len(r[0]) > 0
|
||
assert "capital" not in r[0]
|
||
assert "Germany" not in r[0]
|
||
|
||
# simple prompting with stop words set in kwargs (overrides PN stop words)
|
||
r = node(
|
||
"Given the context please generate a question. Context: Berlin is the capital of Germany.; Question:",
|
||
stop_words=None,
|
||
)
|
||
assert "capital" in r[0] or "Germany" in r[0]
|
||
|
||
tt = PromptTemplate(
|
||
name="question-generation-copy",
|
||
prompt_text="Given the context please generate a question. Context: {documents}; Question:",
|
||
)
|
||
# with custom prompt template
|
||
r = node.prompt(tt, documents=["Berlin is the capital of Germany."])
|
||
assert r[0] == "What is the" or r[0] == "What city is the"
|
||
|
||
# with custom prompt template and stop words set in kwargs (overrides PN stop words)
|
||
r = node.prompt(tt, documents=["Berlin is the capital of Germany."], stop_words=None)
|
||
assert "capital" in r[0] or "Germany" in r[0]
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["openai", "azure"], indirect=True)
|
||
def test_streaming_prompt_node_with_params(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
# test streaming of calls to OpenAI by passing a stream handler to the prompt method
|
||
ttsh = TestTokenStreamingHandler()
|
||
node = PromptNode(prompt_model)
|
||
response = node("What are some of the best cities in the world to live and why?", stream=True, stream_handler=ttsh)
|
||
|
||
assert len(response[0]) > 0, "Response should not be empty"
|
||
assert ttsh.stream_handler_invoked, "Stream handler should have been invoked"
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.skipif(
|
||
not os.environ.get("OPENAI_API_KEY", None),
|
||
reason="No OpenAI API key provided. Please export an env var called OPENAI_API_KEY containing the OpenAI API key.",
|
||
)
|
||
def test_streaming_prompt_node():
|
||
ttsh = TestTokenStreamingHandler()
|
||
|
||
# test streaming of all calls to OpenAI by registering a stream handler as a model kwarg
|
||
node = PromptNode(
|
||
"text-davinci-003", api_key=os.environ.get("OPENAI_API_KEY"), model_kwargs={"stream_handler": ttsh}
|
||
)
|
||
response = node("What are some of the best cities in the world to live?")
|
||
|
||
assert len(response[0]) > 0, "Response should not be empty"
|
||
assert ttsh.stream_handler_invoked, "Stream handler should have been invoked"
|
||
|
||
|
||
def test_prompt_node_with_text_generation_model():
|
||
# test simple prompting with text generation model
|
||
# by default, we force the model not return prompt text
|
||
# Thus text-generation models can be used with PromptNode
|
||
# just like text2text-generation models
|
||
node = PromptNode("bigscience/bigscience-small-testing")
|
||
r = node("Hello big science!")
|
||
assert len(r[0]) > 0
|
||
|
||
# test prompting with parameter to return prompt text as well
|
||
# users can use this param to get the prompt text and the generated text
|
||
r = node("Hello big science!", return_full_text=True)
|
||
assert len(r[0]) > 0 and r[0].startswith("Hello big science!")
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_simple_pipeline(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
node = PromptNode(prompt_model, default_prompt_template="sentiment-analysis", output_variable="out")
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is an amazing city.")])
|
||
assert "positive" in result["out"][0].casefold()
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_complex_pipeline(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
node = PromptNode(prompt_model, default_prompt_template="question-generation", output_variable="query")
|
||
node2 = PromptNode(prompt_model, default_prompt_template="question-answering-per-document")
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
pipe.add_node(component=node2, name="prompt_node_2", inputs=["prompt_node"])
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is the capital of Germany")])
|
||
|
||
assert "berlin" in result["answers"][0].answer.casefold()
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_simple_pipeline_with_topk(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
node = PromptNode(prompt_model, default_prompt_template="question-generation", output_variable="query", top_k=2)
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is the capital of Germany")])
|
||
|
||
assert len(result["query"]) == 2
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_pipeline_with_standard_qa(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
node = PromptNode(prompt_model, default_prompt_template="question-answering", top_k=1)
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(
|
||
query="Who lives in Berlin?", # this being a string instead of a list what is being tested
|
||
documents=[
|
||
Document("My name is Carla and I live in Berlin", id="1"),
|
||
Document("My name is Christelle and I live in Paris", id="2"),
|
||
],
|
||
)
|
||
|
||
assert len(result["answers"]) == 1
|
||
assert "carla" in result["answers"][0].answer.casefold()
|
||
|
||
assert result["answers"][0].document_ids == ["1", "2"]
|
||
assert (
|
||
result["answers"][0].meta["prompt"]
|
||
== "Given the context please answer the question. Context: My name is Carla and I live in Berlin My name is Christelle and I live in Paris; "
|
||
"Question: Who lives in Berlin?; Answer:"
|
||
)
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["openai", "azure"], indirect=True)
|
||
def test_pipeline_with_qa_with_references(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
node = PromptNode(prompt_model, default_prompt_template="question-answering-with-references", top_k=1)
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(
|
||
query="Who lives in Berlin?", # this being a string instead of a list what is being tested
|
||
documents=[
|
||
Document("My name is Carla and I live in Berlin", id="1"),
|
||
Document("My name is Christelle and I live in Paris", id="2"),
|
||
],
|
||
)
|
||
|
||
assert len(result["answers"]) == 1
|
||
assert "carla, as stated in document[1]" in result["answers"][0].answer.casefold()
|
||
|
||
assert result["answers"][0].document_ids == ["1"]
|
||
assert (
|
||
result["answers"][0].meta["prompt"]
|
||
== "Create a concise and informative answer (no more than 50 words) for a given question based solely on the given documents. "
|
||
"You must only use information from the given documents. Use an unbiased and journalistic tone. Do not repeat text. Cite the documents using Document[number] notation. "
|
||
"If multiple documents contain the answer, cite those documents like ‘as stated in Document[number], Document[number], etc.’. If the documents do not contain the answer to the question, "
|
||
"say that ‘answering is not possible given the available information.’\n\nDocument[1]: My name is Carla and I live in Berlin\n\nDocument[2]: My name is Christelle and I live in Paris \n "
|
||
"Question: Who lives in Berlin?; Answer: "
|
||
)
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["openai", "azure"], indirect=True)
|
||
def test_pipeline_with_prompt_text_at_query_time(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
node = PromptNode(prompt_model, default_prompt_template="question-answering-with-references", top_k=1)
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(
|
||
query="Who lives in Berlin?", # this being a string instead of a list what is being tested
|
||
documents=[
|
||
Document("My name is Carla and I live in Berlin", id="1"),
|
||
Document("My name is Christelle and I live in Paris", id="2"),
|
||
],
|
||
params={
|
||
"prompt_template": "Create a concise and informative answer (no more than 50 words) for a given question based solely on the given documents. Cite the documents using Document[number] notation.\n\n{join(documents, delimiter=new_line+new_line, pattern='Document[$idx]: $content')}\n\nQuestion: {query}\n\nAnswer: "
|
||
},
|
||
)
|
||
|
||
assert len(result["answers"]) == 1
|
||
assert "carla" in result["answers"][0].answer.casefold()
|
||
|
||
assert result["answers"][0].document_ids == ["1"]
|
||
assert (
|
||
result["answers"][0].meta["prompt"]
|
||
== "Create a concise and informative answer (no more than 50 words) for a given question based solely on the given documents. Cite the documents using Document[number] notation.\n\n"
|
||
"Document[1]: My name is Carla and I live in Berlin\n\nDocument[2]: My name is Christelle and I live in Paris\n\n"
|
||
"Question: Who lives in Berlin?\n\nAnswer: "
|
||
)
|
||
|
||
|
||
@pytest.mark.skip
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["openai", "azure"], indirect=True)
|
||
def test_pipeline_with_prompt_template_at_query_time(prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
node = PromptNode(prompt_model, default_prompt_template="question-answering-with-references", top_k=1)
|
||
|
||
prompt_template_yaml = """
|
||
name: "question-answering-with-references-custom"
|
||
prompt_text: 'Create a concise and informative answer (no more than 50 words) for
|
||
a given question based solely on the given documents. Cite the documents using Doc[number] notation.
|
||
|
||
|
||
{join(documents, delimiter=new_line+new_line, pattern=''Doc[$idx]: $content'')}
|
||
|
||
|
||
Question: {query}
|
||
|
||
|
||
Answer: '
|
||
output_parser:
|
||
type: AnswerParser
|
||
params:
|
||
reference_pattern: Doc\\[([^\\]]+)\\]
|
||
"""
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(
|
||
query="Who lives in Berlin?", # this being a string instead of a list what is being tested
|
||
documents=[
|
||
Document("My name is Carla and I live in Berlin", id="doc-1"),
|
||
Document("My name is Christelle and I live in Paris", id="doc-2"),
|
||
],
|
||
params={"prompt_template": prompt_template_yaml},
|
||
)
|
||
|
||
assert len(result["answers"]) == 1
|
||
assert "carla" in result["answers"][0].answer.casefold()
|
||
|
||
assert result["answers"][0].document_ids == ["doc-1"]
|
||
assert (
|
||
result["answers"][0].meta["prompt"]
|
||
== "Create a concise and informative answer (no more than 50 words) for a given question based solely on the given documents. Cite the documents using Doc[number] notation.\n\n"
|
||
"Doc[1]: My name is Carla and I live in Berlin\n\nDoc[2]: My name is Christelle and I live in Paris\n\n"
|
||
"Question: Who lives in Berlin?\n\nAnswer: "
|
||
)
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_pipeline_with_prompt_template_and_nested_shaper_yaml(tmp_path):
|
||
with open(tmp_path / "tmp_config_with_prompt_template.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: template_with_nested_shaper
|
||
type: PromptTemplate
|
||
params:
|
||
name: custom-template-with-nested-shaper
|
||
prompt_text: "Given the context please answer the question. Context: {{documents}}; Question: {{query}}; Answer: "
|
||
output_parser:
|
||
type: AnswerParser
|
||
- name: p1
|
||
params:
|
||
model_name_or_path: google/flan-t5-small
|
||
default_prompt_template: template_with_nested_shaper
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config_with_prompt_template.yml")
|
||
result = pipeline.run(query="What is an amazing city?", documents=[Document("Berlin is an amazing city.")])
|
||
answer = result["answers"][0].answer
|
||
assert any(word for word in ["berlin", "germany", "population", "city", "amazing"] if word in answer.casefold())
|
||
assert (
|
||
result["answers"][0].meta["prompt"]
|
||
== "Given the context please answer the question. Context: Berlin is an amazing city.; Question: What is an amazing city?; Answer: "
|
||
)
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf"], indirect=True)
|
||
def test_prompt_node_no_debug(prompt_model):
|
||
"""Pipeline with PromptNode should not generate debug info if debug is false."""
|
||
|
||
node = PromptNode(prompt_model, default_prompt_template="question-generation", top_k=2)
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
|
||
# debug explicitely False
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is the capital of Germany")], debug=False)
|
||
assert result.get("_debug", "No debug info") == "No debug info"
|
||
|
||
# debug None
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is the capital of Germany")], debug=None)
|
||
assert result.get("_debug", "No debug info") == "No debug info"
|
||
|
||
# debug True
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is the capital of Germany")], debug=True)
|
||
assert (
|
||
result["_debug"]["prompt_node"]["runtime"]["prompts_used"][0]
|
||
== "Given the context please generate a question. Context: Berlin is the capital of Germany; Question:"
|
||
)
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_complex_pipeline_with_qa(prompt_model):
|
||
"""Test the PromptNode where the `query` is a string instead of a list what the PromptNode would expects,
|
||
because in a question-answering pipeline the retrievers need `query` as a string, so the PromptNode
|
||
need to be able to handle the `query` being a string instead of a list."""
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
prompt_template = PromptTemplate(
|
||
name="question-answering-new",
|
||
prompt_text="Given the context please answer the question. Context: {documents}; Question: {query}; Answer:",
|
||
)
|
||
node = PromptNode(prompt_model, default_prompt_template=prompt_template)
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run(
|
||
query="Who lives in Berlin?", # this being a string instead of a list what is being tested
|
||
documents=[
|
||
Document("My name is Carla and I live in Berlin"),
|
||
Document("My name is Christelle and I live in Paris"),
|
||
],
|
||
debug=True, # so we can verify that the constructed prompt is returned in debug
|
||
)
|
||
|
||
assert len(result["results"]) == 2
|
||
assert "carla" in result["results"][0].casefold()
|
||
|
||
# also verify that the PromptNode has included its constructed prompt LLM model input in the returned debug
|
||
assert (
|
||
result["_debug"]["prompt_node"]["runtime"]["prompts_used"][0]
|
||
== "Given the context please answer the question. Context: My name is Carla and I live in Berlin; "
|
||
"Question: Who lives in Berlin?; Answer:"
|
||
)
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_complex_pipeline_with_shared_model():
|
||
model = PromptModel()
|
||
node = PromptNode(model_name_or_path=model, default_prompt_template="question-generation", output_variable="query")
|
||
node2 = PromptNode(model_name_or_path=model, default_prompt_template="question-answering-per-document")
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
pipe.add_node(component=node2, name="prompt_node_2", inputs=["prompt_node"])
|
||
result = pipe.run(query="not relevant", documents=[Document("Berlin is the capital of Germany")])
|
||
|
||
assert result["answers"][0].answer == "Berlin"
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_simple_pipeline_yaml(tmp_path):
|
||
with open(tmp_path / "tmp_config.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: p1
|
||
params:
|
||
default_prompt_template: sentiment-analysis
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config.yml")
|
||
result = pipeline.run(query="not relevant", documents=[Document("Berlin is an amazing city.")])
|
||
assert result["results"][0] == "positive"
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_simple_pipeline_yaml_with_default_params(tmp_path):
|
||
with open(tmp_path / "tmp_config.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: p1
|
||
type: PromptNode
|
||
params:
|
||
default_prompt_template: sentiment-analysis
|
||
model_kwargs:
|
||
torch_dtype: torch.bfloat16
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config.yml")
|
||
assert pipeline.graph.nodes["p1"]["component"].prompt_model.model_kwargs == {"torch_dtype": "torch.bfloat16"}
|
||
|
||
result = pipeline.run(query=None, documents=[Document("Berlin is an amazing city.")])
|
||
assert result["results"][0] == "positive"
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_complex_pipeline_yaml(tmp_path):
|
||
with open(tmp_path / "tmp_config.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: p1
|
||
params:
|
||
default_prompt_template: question-generation
|
||
output_variable: query
|
||
type: PromptNode
|
||
- name: p2
|
||
params:
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
- name: p2
|
||
inputs:
|
||
- p1
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config.yml")
|
||
result = pipeline.run(query="not relevant", documents=[Document("Berlin is an amazing city.")])
|
||
response = result["answers"][0].answer
|
||
assert any(word for word in ["berlin", "germany", "population", "city", "amazing"] if word in response.casefold())
|
||
assert len(result["invocation_context"]) > 0
|
||
assert len(result["query"]) > 0
|
||
assert "query" in result["invocation_context"] and len(result["invocation_context"]["query"]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_complex_pipeline_with_shared_prompt_model_yaml(tmp_path):
|
||
with open(tmp_path / "tmp_config.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: pmodel
|
||
type: PromptModel
|
||
- name: p1
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question-generation
|
||
output_variable: query
|
||
type: PromptNode
|
||
- name: p2
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
- name: p2
|
||
inputs:
|
||
- p1
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config.yml")
|
||
result = pipeline.run(query="not relevant", documents=[Document("Berlin is an amazing city.")])
|
||
response = result["answers"][0].answer
|
||
assert any(word for word in ["berlin", "germany", "population", "city", "amazing"] if word in response.casefold())
|
||
assert len(result["invocation_context"]) > 0
|
||
assert len(result["query"]) > 0
|
||
assert "query" in result["invocation_context"] and len(result["invocation_context"]["query"]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_complex_pipeline_with_shared_prompt_model_and_prompt_template_yaml(tmp_path):
|
||
with open(tmp_path / "tmp_config_with_prompt_template.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: pmodel
|
||
type: PromptModel
|
||
params:
|
||
model_name_or_path: google/flan-t5-small
|
||
model_kwargs:
|
||
torch_dtype: auto
|
||
- name: question_generation_template
|
||
type: PromptTemplate
|
||
params:
|
||
name: question-generation-new
|
||
prompt_text: "Given the context please generate a question. Context: {{documents}}; Question:"
|
||
- name: p1
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question_generation_template
|
||
output_variable: query
|
||
type: PromptNode
|
||
- name: p2
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
- name: p2
|
||
inputs:
|
||
- p1
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config_with_prompt_template.yml")
|
||
result = pipeline.run(query="not relevant", documents=[Document("Berlin is an amazing city.")])
|
||
response = result["answers"][0].answer
|
||
assert any(word for word in ["berlin", "germany", "population", "city", "amazing"] if word in response.casefold())
|
||
assert len(result["invocation_context"]) > 0
|
||
assert len(result["query"]) > 0
|
||
assert "query" in result["invocation_context"] and len(result["invocation_context"]["query"]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_complex_pipeline_with_with_dummy_node_between_prompt_nodes_yaml(tmp_path):
|
||
# test that we can stick some random node in between prompt nodes and that everything still works
|
||
# most specifically, we want to ensure that invocation_context is still populated correctly and propagated
|
||
class InBetweenNode(BaseComponent):
|
||
outgoing_edges = 1
|
||
|
||
def run(
|
||
self,
|
||
query: Optional[str] = None,
|
||
file_paths: Optional[List[str]] = None,
|
||
labels: Optional[MultiLabel] = None,
|
||
documents: Optional[List[Document]] = None,
|
||
meta: Optional[dict] = None,
|
||
) -> Tuple[Dict, str]:
|
||
return {}, "output_1"
|
||
|
||
def run_batch(
|
||
self,
|
||
queries: Optional[Union[str, List[str]]] = None,
|
||
file_paths: Optional[List[str]] = None,
|
||
labels: Optional[Union[MultiLabel, List[MultiLabel]]] = None,
|
||
documents: Optional[Union[List[Document], List[List[Document]]]] = None,
|
||
meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
|
||
params: Optional[dict] = None,
|
||
debug: Optional[bool] = None,
|
||
):
|
||
return {}, "output_1"
|
||
|
||
with open(tmp_path / "tmp_config_with_prompt_template.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: in_between
|
||
type: InBetweenNode
|
||
- name: pmodel
|
||
type: PromptModel
|
||
params:
|
||
model_name_or_path: google/flan-t5-small
|
||
model_kwargs:
|
||
torch_dtype: torch.bfloat16
|
||
- name: question_generation_template
|
||
type: PromptTemplate
|
||
params:
|
||
name: question-generation-new
|
||
prompt_text: "Given the context please generate a question. Context: {{documents}}; Question:"
|
||
- name: p1
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question_generation_template
|
||
output_variable: query
|
||
type: PromptNode
|
||
- name: p2
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
- name: in_between
|
||
inputs:
|
||
- p1
|
||
- name: p2
|
||
inputs:
|
||
- in_between
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config_with_prompt_template.yml")
|
||
result = pipeline.run(query="not relevant", documents=[Document("Berlin is an amazing city.")])
|
||
response = result["answers"][0].answer
|
||
assert any(word for word in ["berlin", "germany", "population", "city", "amazing"] if word in response.casefold())
|
||
assert len(result["invocation_context"]) > 0
|
||
assert len(result["query"]) > 0
|
||
assert "query" in result["invocation_context"] and len(result["invocation_context"]["query"]) > 0
|
||
|
||
|
||
@pytest.mark.parametrize("haystack_openai_config", ["openai", "azure"], indirect=True)
|
||
def test_complex_pipeline_with_all_features(tmp_path, haystack_openai_config):
|
||
if not haystack_openai_config:
|
||
pytest.skip("No API key found, skipping test")
|
||
|
||
if "azure_base_url" in haystack_openai_config:
|
||
# don't change this indentation, it's important for the yaml to be valid
|
||
azure_conf_yaml_snippet = f"""
|
||
azure_base_url: {haystack_openai_config['azure_base_url']}
|
||
azure_deployment_name: {haystack_openai_config['azure_deployment_name']}
|
||
"""
|
||
else:
|
||
azure_conf_yaml_snippet = ""
|
||
with open(tmp_path / "tmp_config_with_prompt_template.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: pmodel
|
||
type: PromptModel
|
||
params:
|
||
model_name_or_path: google/flan-t5-small
|
||
model_kwargs:
|
||
torch_dtype: torch.bfloat16
|
||
- name: pmodel_openai
|
||
type: PromptModel
|
||
params:
|
||
model_name_or_path: text-davinci-003
|
||
model_kwargs:
|
||
temperature: 0.9
|
||
max_tokens: 64
|
||
{azure_conf_yaml_snippet}
|
||
api_key: {haystack_openai_config["api_key"]}
|
||
- name: question_generation_template
|
||
type: PromptTemplate
|
||
params:
|
||
name: question-generation-new
|
||
prompt_text: "Given the context please generate a question. Context: {{documents}}; Question:"
|
||
- name: p1
|
||
params:
|
||
model_name_or_path: pmodel_openai
|
||
default_prompt_template: question_generation_template
|
||
output_variable: query
|
||
type: PromptNode
|
||
- name: p2
|
||
params:
|
||
model_name_or_path: pmodel
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
- name: p2
|
||
inputs:
|
||
- p1
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config_with_prompt_template.yml")
|
||
result = pipeline.run(query="not relevant", documents=[Document("Berlin is a city in Germany.")])
|
||
response = result["answers"][0].answer
|
||
assert any(word for word in ["berlin", "germany", "population", "city", "amazing"] if word in response.casefold())
|
||
assert len(result["invocation_context"]) > 0
|
||
assert len(result["query"]) > 0
|
||
assert "query" in result["invocation_context"] and len(result["invocation_context"]["query"]) > 0
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_complex_pipeline_with_multiple_same_prompt_node_components_yaml(tmp_path):
|
||
# p2 and p3 are essentially the same PromptNode component, make sure we can use them both as is in the pipeline
|
||
with open(tmp_path / "tmp_config.yml", "w") as tmp_file:
|
||
tmp_file.write(
|
||
f"""
|
||
version: ignore
|
||
components:
|
||
- name: p1
|
||
params:
|
||
default_prompt_template: question-generation
|
||
type: PromptNode
|
||
- name: p2
|
||
params:
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
- name: p3
|
||
params:
|
||
default_prompt_template: question-answering-per-document
|
||
type: PromptNode
|
||
pipelines:
|
||
- name: query
|
||
nodes:
|
||
- name: p1
|
||
inputs:
|
||
- Query
|
||
- name: p2
|
||
inputs:
|
||
- p1
|
||
- name: p3
|
||
inputs:
|
||
- p2
|
||
"""
|
||
)
|
||
pipeline = Pipeline.load_from_yaml(path=tmp_path / "tmp_config.yml")
|
||
assert pipeline is not None
|
||
|
||
|
||
class TestTokenLimit:
|
||
@pytest.mark.integration
|
||
def test_hf_token_limit_warning(self, prompt_node, caplog):
|
||
prompt_template = PromptTemplate(
|
||
name="too-long-temp", prompt_text="Repeating text" * 200 + "Docs: {documents}; Answer:"
|
||
)
|
||
with caplog.at_level(logging.WARNING):
|
||
_ = prompt_node.prompt(prompt_template, documents=["Berlin is an amazing city."])
|
||
assert "The prompt has been truncated from 812 tokens to 412 tokens" in caplog.text
|
||
assert "and answer length (100 tokens) fit within the max token limit (512 tokens)." in caplog.text
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.skipif(
|
||
not os.environ.get("OPENAI_API_KEY", None),
|
||
reason="No OpenAI API key provided. Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||
)
|
||
def test_openai_token_limit_warning(self, caplog):
|
||
tt = PromptTemplate(name="too-long-temp", prompt_text="Repeating text" * 200 + "Docs: {documents}; Answer:")
|
||
prompt_node = PromptNode("text-ada-001", max_length=2000, api_key=os.environ.get("OPENAI_API_KEY", ""))
|
||
with caplog.at_level(logging.WARNING):
|
||
_ = prompt_node.prompt(tt, documents=["Berlin is an amazing city."])
|
||
assert "The prompt has been truncated from" in caplog.text
|
||
assert "and answer length (2000 tokens) fit within the max token limit (2049 tokens)." in caplog.text
|
||
|
||
|
||
class TestRunBatch:
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_simple_pipeline_batch_no_query_single_doc_list(self, prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
node = PromptNode(prompt_model, default_prompt_template="sentiment-analysis")
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run_batch(
|
||
queries=None, documents=[Document("Berlin is an amazing city."), Document("I am not feeling well.")]
|
||
)
|
||
assert isinstance(result["results"], list)
|
||
assert isinstance(result["results"][0], list)
|
||
assert isinstance(result["results"][0][0], str)
|
||
assert "positive" in result["results"][0][0].casefold()
|
||
assert "negative" in result["results"][1][0].casefold()
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_simple_pipeline_batch_no_query_multiple_doc_list(self, prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
node = PromptNode(prompt_model, default_prompt_template="sentiment-analysis", output_variable="out")
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run_batch(
|
||
queries=None,
|
||
documents=[
|
||
[Document("Berlin is an amazing city."), Document("Paris is an amazing city.")],
|
||
[Document("I am not feeling well.")],
|
||
],
|
||
)
|
||
assert isinstance(result["out"], list)
|
||
assert isinstance(result["out"][0], list)
|
||
assert isinstance(result["out"][0][0], str)
|
||
assert all("positive" in x.casefold() for x in result["out"][0])
|
||
assert "negative" in result["out"][1][0].casefold()
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.parametrize("prompt_model", ["hf", "openai", "azure"], indirect=True)
|
||
def test_simple_pipeline_batch_query_multiple_doc_list(self, prompt_model):
|
||
skip_test_for_invalid_key(prompt_model)
|
||
|
||
prompt_template = PromptTemplate(
|
||
name="question-answering-new",
|
||
prompt_text="Given the context please answer the question. Context: {documents}; Question: {query}; Answer:",
|
||
)
|
||
node = PromptNode(prompt_model, default_prompt_template=prompt_template)
|
||
|
||
pipe = Pipeline()
|
||
pipe.add_node(component=node, name="prompt_node", inputs=["Query"])
|
||
result = pipe.run_batch(
|
||
queries=["Who lives in Berlin?"],
|
||
documents=[
|
||
[Document("My name is Carla and I live in Berlin"), Document("My name is James and I live in London")],
|
||
[Document("My name is Christelle and I live in Paris")],
|
||
],
|
||
debug=True,
|
||
)
|
||
assert isinstance(result["results"], list)
|
||
assert isinstance(result["results"][0], list)
|
||
assert isinstance(result["results"][0][0], str)
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_HFLocalInvocationLayer_supports():
|
||
assert HFLocalInvocationLayer.supports("philschmid/flan-t5-base-samsum")
|
||
assert HFLocalInvocationLayer.supports("bigscience/T0_3B")
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_chatgpt_direct_prompting(chatgpt_prompt_model):
|
||
skip_test_for_invalid_key(chatgpt_prompt_model)
|
||
pn = PromptNode(chatgpt_prompt_model)
|
||
result = pn("Hey, I need some Python help. When should I use list comprehension?")
|
||
assert len(result) == 1 and all(w in result[0] for w in ["comprehension", "list"])
|
||
|
||
|
||
@pytest.mark.integration
|
||
def test_chatgpt_direct_prompting_w_messages(chatgpt_prompt_model):
|
||
skip_test_for_invalid_key(chatgpt_prompt_model)
|
||
pn = PromptNode(chatgpt_prompt_model)
|
||
|
||
messages = [
|
||
{"role": "system", "content": "You are a helpful assistant."},
|
||
{"role": "user", "content": "Who won the world series in 2020?"},
|
||
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
|
||
{"role": "user", "content": "Where was it played?"},
|
||
]
|
||
|
||
result = pn(messages)
|
||
assert len(result) == 1 and all(w in result[0].casefold() for w in ["arlington", "texas"])
|
||
|
||
|
||
@pytest.mark.integration
|
||
@pytest.mark.skipif(
|
||
not os.environ.get("OPENAI_API_KEY", None),
|
||
reason="No OpenAI API key provided. Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||
)
|
||
def test_chatgpt_promptnode():
|
||
pn = PromptNode(model_name_or_path="gpt-3.5-turbo", api_key=os.environ.get("OPENAI_API_KEY", None))
|
||
|
||
result = pn("Hey, I need some Python help. When should I use list comprehension?")
|
||
assert len(result) == 1 and all(w in result[0] for w in ["comprehension", "list"])
|
||
|
||
messages = [
|
||
{"role": "system", "content": "You are a helpful assistant."},
|
||
{"role": "user", "content": "Who won the world series in 2020?"},
|
||
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
|
||
{"role": "user", "content": "Where was it played?"},
|
||
]
|
||
result = pn(messages)
|
||
assert len(result) == 1 and all(w in result[0].casefold() for w in ["arlington", "texas"])
|