Branden Chan 1cebcb7dda
Create time and performance benchmarks for all readers and retrievers (#339)
* add time and perf benchmark for es

* Add retriever benchmarking

* Add Reader benchmarking

* add nq to squad conversion

* add conversion stats

* clean benchmarks

* Add link to dataset

* Update imports

* add first support for neg psgs

* Refactor test

* set max_seq_len

* cleanup benchmark

* begin retriever speed benchmarking

* Add support for retriever query index benchmarking

* improve reader eval, retriever speed benchmarking

* improve retriever speed benchmarking

* Add retriever accuracy benchmark

* Add neg doc shuffling

* Add top_n

* 3x speedup of SQL. add postgres docker run. make shuffle neg a param. add more logging

* Add models to sweep

* add option for faiss index type

* remove unneeded line

* change faiss to faiss_flat

* begin automatic benchmark script

* remove existing postgres docker for benchmarking

* Add data processing scripts

* Remove shuffle in script bc data already shuffled

* switch hnsw setup from 256 to 128

* change es similarity to dot product by default

* Error includes stack trace

* Change ES default timeout

* remove delete_docs() from timing for indexing

* Add support for website export

* update website on push to benchmarks

* add complete benchmarks results

* new json format

* removed NaN as is not a valid json token

* fix benchmarking for faiss hnsw queries. do sql calls in update_embeddings() as batches

* update benchmarks for hnsw 128,20,80

* don't delete full index in delete_all_documents()

* update texts for charts

* update recall column for retriever

* change scale and add units to desc

* add units to legend

* add axis titles. update desc

* add html tags

Co-authored-by: deepset <deepset@Crenolape.localdomain>
Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
Co-authored-by: PiffPaffM <markuspaff.mp@gmail.com>
2020-10-12 13:34:42 +02:00

54 lines
2.2 KiB
Python

from utils import get_document_store, index_to_doc_store, get_reader
from haystack.preprocessor.utils import eval_data_from_file
from pathlib import Path
import pandas as pd
reader_models = ["deepset/roberta-base-squad2", "deepset/minilm-uncased-squad2",
"deepset/bert-base-cased-squad2", "deepset/bert-large-uncased-whole-word-masking-squad2",
"deepset/xlm-roberta-large-squad2", "distilbert-base-uncased-distilled-squad"]
reader_types = ["farm"]
data_dir = Path("../../data/squad20")
filename = "dev-v2.0.json"
# Note that this number is approximate - it was calculated using Bert Base Cased
# This number could vary when using a different tokenizer
n_passages = 12350
doc_index = "eval_document"
label_index = "label"
def benchmark_reader():
reader_results = []
doc_store = get_document_store("elasticsearch")
docs, labels = eval_data_from_file(data_dir/filename)
index_to_doc_store(doc_store, docs, None, labels)
for reader_name in reader_models:
for reader_type in reader_types:
try:
reader = get_reader(reader_name, reader_type)
results = reader.eval(document_store=doc_store,
doc_index=doc_index,
label_index=label_index,
device="cuda")
# print(results)
results["passages_per_second"] = n_passages / results["reader_time"]
results["reader"] = reader_name
results["error"] = ""
reader_results.append(results)
except Exception as e:
results = {'EM': 0.,
'f1': 0.,
'top_n_accuracy': 0.,
'top_n': 0,
'reader_time': 0.,
"passages_per_second": 0.,
"seconds_per_query": 0.,
'reader': reader_name,
"error": e}
reader_results.append(results)
reader_df = pd.DataFrame.from_records(reader_results)
reader_df.to_csv("reader_results.csv")
if __name__ == "__main__":
benchmark_reader()