haystack/test/test_schema.py
Sara Zan a59bca3661
Apply black formatting (#2115)
* Testing black on ui/

* Applying black on docstores

* Add latest docstring and tutorial changes

* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too

* Remove comments

* Relax constraints on pydoc-markdown

* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade

* Fix a couple of bugs

* Add a type: ignore that was missing somehow

* Give path to black

* Apply Black

* Apply Black

* Relocate a couple of type: ignore

* Update documentation

* Make Linux CI run after applying Black

* Triggering Black

* Apply Black

* Remove dependency, does not work well

* Remove manually double trailing commas

* Update documentation

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-02-03 13:43:18 +01:00

204 lines
6.0 KiB
Python

from haystack.schema import Document, Label, Answer, Span
import pytest
import numpy as np
LABELS = [
Label(
query="some",
answer=Answer(
answer="an answer",
type="extractive",
score=0.1,
document_id="123",
offsets_in_document=[Span(start=1, end=3)],
),
document=Document(content="some text", content_type="text"),
is_correct_answer=True,
is_correct_document=True,
origin="user-feedback",
),
Label(
query="some",
answer=Answer(answer="annother answer", type="extractive", score=0.1, document_id="123"),
document=Document(content="some text", content_type="text"),
is_correct_answer=True,
is_correct_document=True,
origin="user-feedback",
),
Label(
query="some",
answer=Answer(
answer="an answer",
type="extractive",
score=0.1,
document_id="123",
offsets_in_document=[Span(start=1, end=3)],
),
document=Document(content="some text", content_type="text"),
is_correct_answer=True,
is_correct_document=True,
origin="user-feedback",
),
]
def test_no_answer_label():
labels = [
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
),
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=True,
origin="gold-label",
),
Label(
query="question",
answer=Answer(answer="some"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
),
Label(
query="question",
answer=Answer(answer="some"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=False,
origin="gold-label",
),
]
assert labels[0].no_answer == True
assert labels[1].no_answer == True
assert labels[2].no_answer == False
assert labels[3].no_answer == False
def test_equal_label():
assert LABELS[2] == LABELS[0]
assert LABELS[1] != LABELS[0]
def test_answer_to_json():
a = Answer(
answer="an answer",
type="extractive",
score=0.1,
context="abc",
offsets_in_document=[Span(start=1, end=10)],
offsets_in_context=[Span(start=3, end=5)],
document_id="123",
)
j = a.to_json()
assert type(j) == str
assert len(j) > 30
a_new = Answer.from_json(j)
assert type(a_new.offsets_in_document[0]) == Span
assert a_new == a
def test_answer_to_dict():
a = Answer(
answer="an answer",
type="extractive",
score=0.1,
context="abc",
offsets_in_document=[Span(start=1, end=10)],
offsets_in_context=[Span(start=3, end=5)],
document_id="123",
)
j = a.to_dict()
assert type(j) == dict
a_new = Answer.from_dict(j)
assert type(a_new.offsets_in_document[0]) == Span
assert a_new == a
def test_label_to_json():
j0 = LABELS[0].to_json()
l_new = Label.from_json(j0)
assert l_new == LABELS[0]
def test_label_to_json():
j0 = LABELS[0].to_json()
l_new = Label.from_json(j0)
assert l_new == LABELS[0]
assert l_new.answer.offsets_in_document[0].start == 1
def test_label_to_dict():
j0 = LABELS[0].to_dict()
l_new = Label.from_dict(j0)
assert l_new == LABELS[0]
assert l_new.answer.offsets_in_document[0].start == 1
def test_doc_to_json():
# With embedding
d = Document(
content="some text",
content_type="text",
score=0.99988,
meta={"name": "doc1"},
embedding=np.random.rand(768).astype(np.float32),
)
j0 = d.to_json()
d_new = Document.from_json(j0)
assert d == d_new
# No embedding
d = Document(content="some text", content_type="text", score=0.99988, meta={"name": "doc1"}, embedding=None)
j0 = d.to_json()
d_new = Document.from_json(j0)
assert d == d_new
def test_answer_postinit():
a = Answer(answer="test", offsets_in_document=[{"start": 10, "end": 20}])
assert a.meta == {}
assert isinstance(a.offsets_in_document[0], Span)
def test_generate_doc_id_using_text():
text1 = "text1"
text2 = "text2"
doc1_text1 = Document(content=text1, meta={"name": "doc1"})
doc2_text1 = Document(content=text1, meta={"name": "doc2"})
doc3_text2 = Document(content=text2, meta={"name": "doc3"})
assert doc1_text1.id == doc2_text1.id
assert doc1_text1.id != doc3_text2.id
def test_generate_doc_id_using_custom_list():
text1 = "text1"
text2 = "text2"
doc1_meta1_id_by_content = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content"])
doc1_meta2_id_by_content = Document(content=text1, meta={"name": "doc2"}, id_hash_keys=["content"])
assert doc1_meta1_id_by_content.id == doc1_meta2_id_by_content.id
doc1_meta1_id_by_content_and_meta = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content", "meta"])
doc1_meta2_id_by_content_and_meta = Document(content=text1, meta={"name": "doc2"}, id_hash_keys=["content", "meta"])
assert doc1_meta1_id_by_content_and_meta.id != doc1_meta2_id_by_content_and_meta.id
doc1_text1 = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content"])
doc3_text2 = Document(content=text2, meta={"name": "doc3"}, id_hash_keys=["content"])
assert doc1_text1.id != doc3_text2.id
with pytest.raises(ValueError):
_ = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content", "non_existing_field"])