Sebastian Husch Lee 85258f0654
fix: Fix types and formatting pipeline test_run.py (#9575)
* Fix types in test_run.py

* Get test_run.py to pass fmt-check

* Add test_run to mypy checks

* Update test folder to pass ruff linting

* Fix merge

* Fix HF tests

* Fix hf test

* Try to fix tests

* Another attempt

* minor fix

* fix SentenceTransformersDiversityRanker

* skip integrations tests due to model unavailable on HF inference

---------

Co-authored-by: anakin87 <stefanofiorucci@gmail.com>
2025-07-03 09:49:09 +02:00

1269 lines
51 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import logging
import os
from datetime import datetime
from typing import Any, Dict, List, Optional
from unittest.mock import ANY, MagicMock, patch
import pytest
from openai import OpenAIError
from openai.types.chat import (
ChatCompletion,
ChatCompletionChunk,
ChatCompletionMessage,
ChatCompletionMessageToolCall,
chat_completion_chunk,
)
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_chunk import ChoiceDelta, ChoiceDeltaToolCall, ChoiceDeltaToolCallFunction
from openai.types.chat.chat_completion_message_tool_call import Function
from openai.types.completion_usage import CompletionTokensDetails, CompletionUsage, PromptTokensDetails
from haystack import component
from haystack.components.generators.chat.openai import (
OpenAIChatGenerator,
_check_finish_reason,
_convert_chat_completion_chunk_to_streaming_chunk,
)
from haystack.components.generators.utils import print_streaming_chunk
from haystack.dataclasses import ChatMessage, StreamingChunk, ToolCall, ToolCallDelta
from haystack.tools import ComponentTool, Tool
from haystack.tools.toolset import Toolset
from haystack.utils.auth import Secret
@pytest.fixture
def chat_messages():
return [
ChatMessage.from_system("You are a helpful assistant"),
ChatMessage.from_user("What's the capital of France"),
]
@pytest.fixture
def mock_chat_completion_chunk_with_tools(openai_mock_stream):
"""
Mock the OpenAI API completion chunk response and reuse it for tests
"""
with patch("openai.resources.chat.completions.Completions.create") as mock_chat_completion_create:
completion = ChatCompletionChunk(
id="foo",
model="gpt-4",
object="chat.completion.chunk",
choices=[
chat_completion_chunk.Choice(
finish_reason="tool_calls",
logprobs=None,
index=0,
delta=chat_completion_chunk.ChoiceDelta(
role="assistant",
tool_calls=[
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id="123",
type="function",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
name="weather", arguments='{"city": "Paris"}'
),
)
],
),
)
],
created=int(datetime.now().timestamp()),
)
mock_chat_completion_create.return_value = openai_mock_stream(
completion, cast_to=None, response=None, client=None
)
yield mock_chat_completion_create
def weather_function(city: str) -> Dict[str, Any]:
weather_info = {
"Berlin": {"weather": "mostly sunny", "temperature": 7, "unit": "celsius"},
"Paris": {"weather": "mostly cloudy", "temperature": 8, "unit": "celsius"},
"Rome": {"weather": "sunny", "temperature": 14, "unit": "celsius"},
}
return weather_info.get(city, {"weather": "unknown", "temperature": 0, "unit": "celsius"})
@component
class MessageExtractor:
@component.output_types(messages=List[str], meta=Dict[str, Any])
def run(self, messages: List[ChatMessage], meta: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""
Extracts the text content of ChatMessage objects
:param messages: List of Haystack ChatMessage objects
:param meta: Optional metadata to include in the response.
:returns:
A dictionary with keys "messages" and "meta".
"""
if meta is None:
meta = {}
return {"messages": [m.text for m in messages], "meta": meta}
@pytest.fixture
def tools():
weather_tool = Tool(
name="weather",
description="useful to determine the weather in a given location",
parameters={"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]},
function=weather_function,
)
# We add a tool that has a more complex parameter signature
message_extractor_tool = ComponentTool(
component=MessageExtractor(),
name="message_extractor",
description="Useful for returning the text content of ChatMessage objects",
)
return [weather_tool, message_extractor_tool]
class TestOpenAIChatGenerator:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = OpenAIChatGenerator()
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is None
assert not component.generation_kwargs
assert component.client.timeout == 30
assert component.client.max_retries == 5
assert component.tools is None
assert not component.tools_strict
assert component.http_client_kwargs is None
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(ValueError):
OpenAIChatGenerator()
def test_init_fail_with_duplicate_tool_names(self, monkeypatch, tools):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
duplicate_tools = [tools[0], tools[0]]
with pytest.raises(ValueError):
OpenAIChatGenerator(tools=duplicate_tools)
def test_init_with_parameters(self, monkeypatch):
tool = Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=lambda x: x)
monkeypatch.setenv("OPENAI_TIMEOUT", "100")
monkeypatch.setenv("OPENAI_MAX_RETRIES", "10")
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"),
model="gpt-4o-mini",
streaming_callback=print_streaming_chunk,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
timeout=40.0,
max_retries=1,
tools=[tool],
tools_strict=True,
http_client_kwargs={"proxy": "http://example.com:8080", "verify": False},
)
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is print_streaming_chunk
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.client.timeout == 40.0
assert component.client.max_retries == 1
assert component.tools == [tool]
assert component.tools_strict
assert component.http_client_kwargs == {"proxy": "http://example.com:8080", "verify": False}
def test_init_with_parameters_and_env_vars(self, monkeypatch):
monkeypatch.setenv("OPENAI_TIMEOUT", "100")
monkeypatch.setenv("OPENAI_MAX_RETRIES", "10")
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"),
model="gpt-4o-mini",
streaming_callback=print_streaming_chunk,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is print_streaming_chunk
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.client.timeout == 100.0
assert component.client.max_retries == 10
def test_to_dict_default(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = OpenAIChatGenerator()
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"model": "gpt-4o-mini",
"organization": None,
"streaming_callback": None,
"api_base_url": None,
"generation_kwargs": {},
"tools": None,
"tools_strict": False,
"max_retries": None,
"timeout": None,
"http_client_kwargs": None,
},
}
def test_to_dict_with_parameters(self, monkeypatch):
tool = Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=print)
monkeypatch.setenv("ENV_VAR", "test-api-key")
component = OpenAIChatGenerator(
api_key=Secret.from_env_var("ENV_VAR"),
model="gpt-4o-mini",
streaming_callback=print_streaming_chunk,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
tools=[tool],
tools_strict=True,
max_retries=10,
timeout=100.0,
http_client_kwargs={"proxy": "http://example.com:8080", "verify": False},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["ENV_VAR"], "strict": True, "type": "env_var"},
"model": "gpt-4o-mini",
"organization": None,
"api_base_url": "test-base-url",
"max_retries": 10,
"timeout": 100.0,
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"tools": [
{
"type": "haystack.tools.tool.Tool",
"data": {
"description": "description",
"function": "builtins.print",
"inputs_from_state": None,
"name": "name",
"outputs_to_state": None,
"outputs_to_string": None,
"parameters": {"x": {"type": "string"}},
},
}
],
"tools_strict": True,
"http_client_kwargs": {"proxy": "http://example.com:8080", "verify": False},
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"model": "gpt-4o-mini",
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"max_retries": 10,
"timeout": 100.0,
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"tools": [
{
"type": "haystack.tools.tool.Tool",
"data": {
"description": "description",
"function": "builtins.print",
"name": "name",
"parameters": {"x": {"type": "string"}},
},
}
],
"tools_strict": True,
"http_client_kwargs": {"proxy": "http://example.com:8080", "verify": False},
},
}
component = OpenAIChatGenerator.from_dict(data)
assert isinstance(component, OpenAIChatGenerator)
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is print_streaming_chunk
assert component.api_base_url == "test-base-url"
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.api_key == Secret.from_env_var("OPENAI_API_KEY")
assert component.tools == [
Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=print)
]
assert component.tools_strict
assert component.client.timeout == 100.0
assert component.client.max_retries == 10
assert component.http_client_kwargs == {"proxy": "http://example.com:8080", "verify": False}
def test_from_dict_fail_wo_env_var(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
data = {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"model": "gpt-4",
"organization": None,
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"tools": None,
},
}
with pytest.raises(ValueError):
OpenAIChatGenerator.from_dict(data)
def test_run(self, chat_messages, openai_mock_chat_completion):
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
response = component.run(chat_messages)
# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params(self, chat_messages, openai_mock_chat_completion):
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), generation_kwargs={"max_tokens": 10, "temperature": 0.5}
)
response = component.run(chat_messages)
# check that the component calls the OpenAI API with the correct parameters
_, kwargs = openai_mock_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5
# check that the tools are not passed to the OpenAI API (the generator is initialized without tools)
assert "tools" not in kwargs
# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params_streaming(self, chat_messages, openai_mock_chat_completion_chunk):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), streaming_callback=streaming_callback
)
response = component.run(chat_messages)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].text # see openai_mock_chat_completion_chunk
def test_run_with_streaming_callback_in_run_method(self, chat_messages, openai_mock_chat_completion_chunk):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
response = component.run(chat_messages, streaming_callback=streaming_callback)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].text # see openai_mock_chat_completion_chunk
def test_run_with_wrapped_stream_simulation(self, chat_messages, openai_mock_stream):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
assert isinstance(chunk, StreamingChunk)
chunk = ChatCompletionChunk(
id="id",
model="gpt-4",
object="chat.completion.chunk",
choices=[chat_completion_chunk.Choice(index=0, delta=chat_completion_chunk.ChoiceDelta(content="Hello"))],
created=int(datetime.now().timestamp()),
)
# Here we wrap the OpenAI stream in a MagicMock
# This is to simulate the behavior of some tools like Weave (https://github.com/wandb/weave)
# which wrap the OpenAI stream in their own stream
wrapped_openai_stream = MagicMock()
wrapped_openai_stream.__iter__.return_value = iter([chunk])
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
with patch.object(
component.client.chat.completions, "create", return_value=wrapped_openai_stream
) as mock_create:
response = component.run(chat_messages, streaming_callback=streaming_callback)
mock_create.assert_called_once()
assert streaming_callback_called
assert "replies" in response
assert "Hello" in response["replies"][0].text
def test_check_abnormal_completions(self, caplog):
caplog.set_level(logging.INFO)
messages = [
ChatMessage.from_assistant(
"", meta={"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i}
)
for i, _ in enumerate(range(4))
]
for m in messages:
_check_finish_reason(m.meta)
# check truncation warning
message_template = (
"The completion for index {index} has been truncated before reaching a natural stopping point. "
"Increase the max_tokens parameter to allow for longer completions."
)
for index in [1, 3]:
assert caplog.records[index].message == message_template.format(index=index)
# check content filter warning
message_template = "The completion for index {index} has been truncated due to the content filter."
for index in [0, 2]:
assert caplog.records[index].message == message_template.format(index=index)
def test_run_with_tools(self, tools):
with patch("openai.resources.chat.completions.Completions.create") as mock_chat_completion_create:
completion = ChatCompletion(
id="foo",
model="gpt-4",
object="chat.completion",
choices=[
Choice(
finish_reason="tool_calls",
logprobs=None,
index=0,
message=ChatCompletionMessage(
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
id="123",
type="function",
function=Function(name="weather", arguments='{"city": "Paris"}'),
)
],
),
)
],
created=int(datetime.now().timestamp()),
usage=CompletionUsage(
completion_tokens=40,
prompt_tokens=57,
total_tokens=97,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
mock_chat_completion_create.return_value = completion
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), tools=tools[:1], tools_strict=True
)
response = component.run([ChatMessage.from_user("What's the weather like in Paris?")])
# ensure that the tools are passed to the OpenAI API
function_spec = {**tools[0].tool_spec}
function_spec["strict"] = True
function_spec["parameters"]["additionalProperties"] = False
assert mock_chat_completion_create.call_args[1]["tools"] == [{"type": "function", "function": function_spec}]
assert len(response["replies"]) == 1
message = response["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
assert message.meta["usage"]["completion_tokens"] == 40
def test_run_with_tools_streaming(self, mock_chat_completion_chunk_with_tools, tools):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), streaming_callback=streaming_callback
)
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
response = component.run(chat_messages, tools=tools)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
message = response["replies"][0]
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
def test_invalid_tool_call_json(self, tools, caplog):
caplog.set_level(logging.WARNING)
with patch("openai.resources.chat.completions.Completions.create") as mock_create:
mock_create.return_value = ChatCompletion(
id="test",
model="gpt-4o-mini",
object="chat.completion",
choices=[
Choice(
finish_reason="tool_calls",
index=0,
message=ChatCompletionMessage(
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
id="1",
type="function",
function=Function(name="weather", arguments='"invalid": "json"'),
)
],
),
)
],
created=1234567890,
usage=CompletionUsage(
completion_tokens=47,
prompt_tokens=540,
total_tokens=587,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"), tools=tools)
response = component.run([ChatMessage.from_user("What's the weather in Paris?")])
assert len(response["replies"]) == 1
message = response["replies"][0]
assert len(message.tool_calls) == 0
assert "OpenAI returned a malformed JSON string for tool call arguments" in caplog.text
assert message.meta["finish_reason"] == "tool_calls"
assert message.meta["usage"]["completion_tokens"] == 47
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run(self):
chat_messages = [ChatMessage.from_user("What's the capital of France")]
component = OpenAIChatGenerator(generation_kwargs={"n": 1})
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.text
assert "gpt-4o" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
assert message.meta["usage"]["prompt_tokens"] > 0
def test_run_with_wrong_model(self):
mock_client = MagicMock()
mock_client.chat.completions.create.side_effect = OpenAIError("Invalid model name")
generator = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"), model="something-obviously-wrong")
generator.client = mock_client
with pytest.raises(OpenAIError):
generator.run([ChatMessage.from_user("irrelevant")])
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_streaming(self):
class Callback:
def __init__(self):
self.responses = ""
self.counter = 0
def __call__(self, chunk: StreamingChunk) -> None:
self.counter += 1
self.responses += chunk.content if chunk.content else ""
callback = Callback()
component = OpenAIChatGenerator(
streaming_callback=callback, generation_kwargs={"stream_options": {"include_usage": True}}
)
results = component.run([ChatMessage.from_user("What's the capital of France?")])
# Basic response checks
assert "replies" in results
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.text
assert isinstance(message.meta, dict)
# Metadata checks
metadata = message.meta
assert "gpt-4o" in metadata["model"]
assert metadata["finish_reason"] == "stop"
# Usage information checks
assert isinstance(metadata.get("usage"), dict), "meta.usage not a dict"
usage = metadata["usage"]
assert "prompt_tokens" in usage and usage["prompt_tokens"] > 0
assert "completion_tokens" in usage and usage["completion_tokens"] > 0
# Detailed token information checks
assert isinstance(usage.get("completion_tokens_details"), dict), "usage.completion_tokens_details not a dict"
assert isinstance(usage.get("prompt_tokens_details"), dict), "usage.prompt_tokens_details not a dict"
# Streaming callback verification
assert callback.counter > 1
assert "Paris" in callback.responses
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_with_tools_streaming(self, tools):
chat_messages = [ChatMessage.from_user("What's the weather like in Paris and Berlin?")]
component = OpenAIChatGenerator(
tools=tools,
streaming_callback=print_streaming_chunk,
generation_kwargs={"stream_options": {"include_usage": True}},
)
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message = results["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_calls = message.tool_calls
assert len(tool_calls) == 2
for tool_call in tool_calls:
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
arguments = [tool_call.arguments for tool_call in tool_calls]
assert sorted(arguments, key=lambda x: x["city"]) == [{"city": "Berlin"}, {"city": "Paris"}]
assert message.meta["finish_reason"] == "tool_calls"
def test_openai_chat_generator_with_toolset_initialization(self, tools, monkeypatch):
"""Test that the OpenAIChatGenerator can be initialized with a Toolset."""
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
toolset = Toolset(tools)
generator = OpenAIChatGenerator(tools=toolset)
assert generator.tools == toolset
def test_from_dict_with_toolset(self, tools, monkeypatch):
"""Test that the OpenAIChatGenerator can be deserialized from a dictionary with a Toolset."""
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
toolset = Toolset(tools)
component = OpenAIChatGenerator(tools=toolset)
data = component.to_dict()
deserialized_component = OpenAIChatGenerator.from_dict(data)
assert isinstance(deserialized_component.tools, Toolset)
assert len(deserialized_component.tools) == len(tools)
assert all(isinstance(tool, Tool) for tool in deserialized_component.tools)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_with_toolset(self, tools):
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
toolset = Toolset(tools)
component = OpenAIChatGenerator(tools=toolset)
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message = results["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
@pytest.fixture
def chat_completion_chunks():
return [
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[chat_completion_chunk.Choice(delta=ChoiceDelta(role="assistant"), index=0)],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=0,
id="call_zcvlnVaTeJWRjLAFfYxX69z4",
function=ChoiceDeltaToolCallFunction(arguments="", name="weather"),
type="function",
)
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='{"ci'))
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='ty": '))
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='"Paris'))
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='"}'))]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=1,
id="call_C88m67V16CrETq6jbNXjdZI9",
function=ChoiceDeltaToolCallFunction(arguments="", name="weather"),
type="function",
)
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='{"ci'))
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='ty": '))
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='"Berli'))
]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[
chat_completion_chunk.Choice(
delta=ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='n"}'))]
),
index=0,
)
],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[chat_completion_chunk.Choice(delta=ChoiceDelta(), finish_reason="tool_calls", index=0)],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
),
ChatCompletionChunk(
id="chatcmpl-BZdwjFecdcaQfCf7bn319vRp6fY8F",
choices=[],
created=1747834733,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_54eb4bd693",
usage=CompletionUsage(
completion_tokens=42,
prompt_tokens=282,
total_tokens=324,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
),
]
@pytest.fixture
def streaming_chunks():
return [
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
ChoiceDeltaToolCall(
index=0,
id="call_zcvlnVaTeJWRjLAFfYxX69z4",
function=ChoiceDeltaToolCallFunction(arguments="", name="weather"),
type="function",
)
],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=0,
tool_calls=[ToolCallDelta(tool_name="weather", id="call_zcvlnVaTeJWRjLAFfYxX69z4", index=0)],
start=True,
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='{"ci'))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=0,
tool_calls=[ToolCallDelta(arguments='{"ci', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='ty": '))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=0,
tool_calls=[ToolCallDelta(arguments='ty": ', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='"Paris'))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=0,
tool_calls=[ToolCallDelta(arguments='"Paris', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='"}'))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=0,
tool_calls=[ToolCallDelta(arguments='"}', index=0)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
ChoiceDeltaToolCall(
index=1,
id="call_C88m67V16CrETq6jbNXjdZI9",
function=ChoiceDeltaToolCallFunction(arguments="", name="weather"),
type="function",
)
],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=1,
tool_calls=[ToolCallDelta(tool_name="weather", id="call_C88m67V16CrETq6jbNXjdZI9", index=1)],
start=True,
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='{"ci'))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=1,
tool_calls=[ToolCallDelta(arguments='{"ci', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='ty": '))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=1,
tool_calls=[ToolCallDelta(arguments='ty": ', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='"Berli'))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=1,
tool_calls=[ToolCallDelta(arguments='"Berli', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='n"}'))],
"finish_reason": None,
"received_at": ANY,
"usage": None,
},
index=1,
tool_calls=[ToolCallDelta(arguments='n"}', index=1)],
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": "tool_calls",
"received_at": ANY,
"usage": None,
},
finish_reason="tool_calls",
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"received_at": ANY,
"usage": {
"completion_tokens": 42,
"prompt_tokens": 282,
"total_tokens": 324,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0,
},
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
},
},
),
]
class TestChatCompletionChunkConversion:
def test_convert_chat_completion_chunk_to_streaming_chunk(self, chat_completion_chunks, streaming_chunks):
previous_chunks = []
for openai_chunk, haystack_chunk in zip(chat_completion_chunks, streaming_chunks):
stream_chunk = _convert_chat_completion_chunk_to_streaming_chunk(
chunk=openai_chunk, previous_chunks=previous_chunks
)
assert stream_chunk == haystack_chunk
previous_chunks.append(stream_chunk)
def test_convert_chat_completion_chunk_with_empty_tool_calls(self):
# This can happen with some LLM providers where tool calls are not present but the pydantic models are still
# initialized.
chunk = ChatCompletionChunk(
id="chatcmpl-BC1y4wqIhe17R8sv3lgLcWlB4tXCw",
choices=[
chat_completion_chunk.Choice(
delta=chat_completion_chunk.ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction())]
),
index=0,
)
],
created=1742207200,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
)
result = _convert_chat_completion_chunk_to_streaming_chunk(chunk=chunk, previous_chunks=[])
assert result.content == ""
assert result.start is False
assert result.tool_calls == [ToolCallDelta(index=0)]
assert result.tool_call_result is None
assert result.index == 0
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
assert result.meta["received_at"] is not None
def test_handle_stream_response(self, chat_completion_chunks):
openai_chunks = chat_completion_chunks
comp = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
result = comp._handle_stream_response(openai_chunks, callback=lambda chunk: None)[0] # type: ignore
assert not result.texts
assert not result.text
# Verify both tool calls were found and processed
assert len(result.tool_calls) == 2
assert result.tool_calls[0].id == "call_zcvlnVaTeJWRjLAFfYxX69z4"
assert result.tool_calls[0].tool_name == "weather"
assert result.tool_calls[0].arguments == {"city": "Paris"}
assert result.tool_calls[1].id == "call_C88m67V16CrETq6jbNXjdZI9"
assert result.tool_calls[1].tool_name == "weather"
assert result.tool_calls[1].arguments == {"city": "Berlin"}
# Verify meta information
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
assert result.meta["finish_reason"] == "tool_calls"
assert result.meta["index"] == 0
assert result.meta["completion_start_time"] is not None
assert result.meta["usage"] == {
"completion_tokens": 42,
"prompt_tokens": 282,
"total_tokens": 324,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0,
},
"prompt_tokens_details": {"audio_tokens": 0, "cached_tokens": 0},
}
def test_convert_usage_chunk_to_streaming_chunk(self):
usage_chunk = ChatCompletionChunk(
id="chatcmpl-BC1y4wqIhe17R8sv3lgLcWlB4tXCw",
choices=[],
created=1742207200,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_06737a9306",
usage=CompletionUsage(
completion_tokens=8,
prompt_tokens=13,
total_tokens=21,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
result = _convert_chat_completion_chunk_to_streaming_chunk(chunk=usage_chunk, previous_chunks=[])
assert result.content == ""
assert result.start is False
assert result.tool_calls is None
assert result.tool_call_result is None
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
assert result.meta["received_at"] is not None