mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-06-26 22:00:13 +00:00

* Add trust_remote_code init param to SentenceTransformer embedders * Add release note * Go with no kwargs solution * Update haystack/components/embedders/sentence_transformers_document_embedder.py Co-authored-by: Stefano Fiorucci <stefanofiorucci@gmail.com> * Pydoc fix --------- Co-authored-by: Stefano Fiorucci <stefanofiorucci@gmail.com>
43 lines
1.8 KiB
Python
43 lines
1.8 KiB
Python
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
from haystack.components.embedders.backends.sentence_transformers_backend import (
|
|
_SentenceTransformersEmbeddingBackendFactory,
|
|
)
|
|
from haystack.utils.auth import Secret
|
|
|
|
|
|
@patch("haystack.components.embedders.backends.sentence_transformers_backend.SentenceTransformer")
|
|
def test_factory_behavior(mock_sentence_transformer):
|
|
embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
|
|
model="my_model", device="cpu"
|
|
)
|
|
same_embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend("my_model", "cpu")
|
|
another_embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
|
|
model="another_model", device="cpu"
|
|
)
|
|
|
|
assert same_embedding_backend is embedding_backend
|
|
assert another_embedding_backend is not embedding_backend
|
|
|
|
|
|
@patch("haystack.components.embedders.backends.sentence_transformers_backend.SentenceTransformer")
|
|
def test_model_initialization(mock_sentence_transformer):
|
|
_SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(
|
|
model="model", device="cpu", auth_token=Secret.from_token("fake-api-token"), trust_remote_code=True
|
|
)
|
|
mock_sentence_transformer.assert_called_once_with(
|
|
model_name_or_path="model", device="cpu", use_auth_token="fake-api-token", trust_remote_code=True
|
|
)
|
|
|
|
|
|
@patch("haystack.components.embedders.backends.sentence_transformers_backend.SentenceTransformer")
|
|
def test_embedding_function_with_kwargs(mock_sentence_transformer):
|
|
embedding_backend = _SentenceTransformersEmbeddingBackendFactory.get_embedding_backend(model="model")
|
|
|
|
data = ["sentence1", "sentence2"]
|
|
embedding_backend.embed(data=data, normalize_embeddings=True)
|
|
|
|
embedding_backend.model.encode.assert_called_once_with(data, normalize_embeddings=True)
|