mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 08:52:16 +00:00

* run predictions on ground-truth docs in reader * build dataframe for closed/open domain eval * fix looping through multilabel * fix looping through multilabel's list of labels * simplify collecting relevant docs * switch closed-domain eval off by default * Add latest docstring and tutorial changes * handle edge case params not given * renaming & generate pipeline eval report * add test case for closed-domain eval metrics * Add latest docstring and tutorial changes * test report of closed-domain eval * report closed-domain metrics only for answer metrics not doc metrics * refactoring * fix mypy & remove comment * add second for-loop & use answer as method input * renaming & add separate loop building docs eval df * Add latest docstring and tutorial changes * source /home/tstad/miniconda3/bin/activatechange column order for evaluatation dataframe (#1957) conda activate haystack-dev2 * change column order for evaluatation dataframe * added missing eval column node_input * generic order for both document and answer returning nodes; ensure no columns get lost Co-authored-by: tstadel <60758086+tstadel@users.noreply.github.com> * fix column reordering after renaming of node_input * simplify tests & add docu * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: ju-gu <87523290+ju-gu@users.noreply.github.com> Co-authored-by: tstadel <60758086+tstadel@users.noreply.github.com> Co-authored-by: Thomas Stadelmann <thomas.stadelmann@deepset.ai>
879 lines
41 KiB
Python
879 lines
41 KiB
Python
import pytest
|
|
from haystack.document_stores.base import BaseDocumentStore
|
|
from haystack.document_stores.memory import InMemoryDocumentStore
|
|
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
|
|
from haystack.nodes.answer_generator.transformers import RAGenerator, RAGeneratorType
|
|
from haystack.nodes.retriever.dense import EmbeddingRetriever
|
|
from haystack.nodes.preprocessor import PreProcessor
|
|
from haystack.nodes.evaluator import EvalAnswers, EvalDocuments
|
|
from haystack.nodes.query_classifier.transformers import TransformersQueryClassifier
|
|
from haystack.nodes.retriever.dense import DensePassageRetriever
|
|
from haystack.nodes.retriever.sparse import ElasticsearchRetriever
|
|
from haystack.pipelines.base import Pipeline
|
|
from haystack.pipelines import ExtractiveQAPipeline, GenerativeQAPipeline, SearchSummarizationPipeline
|
|
from haystack.pipelines.standard_pipelines import DocumentSearchPipeline, FAQPipeline, RetrieverQuestionGenerationPipeline, TranslationWrapperPipeline
|
|
from haystack.nodes.summarizer.transformers import TransformersSummarizer
|
|
from haystack.schema import Answer, Document, EvaluationResult, Label, MultiLabel, Span
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever_with_docs", ["embedding"], indirect=True)
|
|
def test_generativeqa_calculate_metrics(document_store_with_docs: InMemoryDocumentStore, rag_generator, retriever_with_docs):
|
|
document_store_with_docs.update_embeddings(retriever=retriever_with_docs)
|
|
pipeline = GenerativeQAPipeline(generator=rag_generator, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "Retriever" in eval_result
|
|
assert "Generator" in eval_result
|
|
assert len(eval_result) == 2
|
|
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
assert metrics["Generator"]["exact_match"] == 0.0
|
|
assert metrics["Generator"]["f1"] == 1.0/3
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
@pytest.mark.parametrize("retriever_with_docs", ["embedding"], indirect=True)
|
|
def test_summarizer_calculate_metrics(document_store_with_docs: ElasticsearchDocumentStore, summarizer, retriever_with_docs):
|
|
document_store_with_docs.update_embeddings(retriever=retriever_with_docs)
|
|
pipeline = SearchSummarizationPipeline(retriever=retriever_with_docs, summarizer=summarizer, return_in_answer_format=True)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "Retriever" in eval_result
|
|
assert "Summarizer" in eval_result
|
|
assert len(eval_result) == 2
|
|
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
assert metrics["Summarizer"]["mrr"] == 0.5
|
|
assert metrics["Summarizer"]["map"] == 0.5
|
|
assert metrics["Summarizer"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Summarizer"]["recall_single_hit"] == 0.5
|
|
assert metrics["Summarizer"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
|
|
@pytest.mark.parametrize("batch_size", [None, 20])
|
|
def test_add_eval_data(document_store, batch_size):
|
|
# add eval data (SQUAD format)
|
|
document_store.add_eval_data(
|
|
filename="samples/squad/small.json",
|
|
doc_index="haystack_test_eval_document",
|
|
label_index="haystack_test_feedback",
|
|
batch_size=batch_size,
|
|
)
|
|
|
|
assert document_store.get_document_count(index="haystack_test_eval_document") == 87
|
|
assert document_store.get_label_count(index="haystack_test_feedback") == 1214
|
|
|
|
# test documents
|
|
docs = document_store.get_all_documents(index="haystack_test_eval_document", filters={"name": ["Normans"]})
|
|
assert docs[0].meta["name"] == "Normans"
|
|
assert len(docs[0].meta.keys()) == 1
|
|
|
|
# test labels
|
|
labels = document_store.get_all_labels(index="haystack_test_feedback")
|
|
label = None
|
|
for l in labels:
|
|
if l.query == "In what country is Normandy located?":
|
|
label = l
|
|
break
|
|
assert label.answer.answer == "France"
|
|
assert label.no_answer == False
|
|
assert label.is_correct_answer == True
|
|
assert label.is_correct_document == True
|
|
assert label.query == "In what country is Normandy located?"
|
|
assert label.origin == "gold-label"
|
|
assert label.answer.offsets_in_document[0].start == 159
|
|
assert label.answer.context[label.answer.offsets_in_context[0].start:label.answer.offsets_in_context[0].end] == "France"
|
|
assert label.answer.document_id == label.document.id
|
|
|
|
# check combination
|
|
doc = document_store.get_document_by_id(label.document.id, index="haystack_test_eval_document")
|
|
start = label.answer.offsets_in_document[0].start
|
|
end = label.answer.offsets_in_document[0].end
|
|
assert end == start + len(label.answer.answer)
|
|
assert doc.content[start:end] == "France"
|
|
|
|
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
def test_eval_reader(reader, document_store: BaseDocumentStore):
|
|
# add eval data (SQUAD format)
|
|
document_store.add_eval_data(
|
|
filename="samples/squad/tiny.json",
|
|
doc_index="haystack_test_eval_document",
|
|
label_index="haystack_test_feedback",
|
|
)
|
|
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
|
|
# eval reader
|
|
reader_eval_results = reader.eval(
|
|
document_store=document_store,
|
|
label_index="haystack_test_feedback",
|
|
doc_index="haystack_test_eval_document",
|
|
device="cpu",
|
|
)
|
|
assert reader_eval_results["f1"] > 66.65
|
|
assert reader_eval_results["f1"] < 66.67
|
|
assert reader_eval_results["EM"] == 50
|
|
assert reader_eval_results["top_n_accuracy"] == 100.0
|
|
|
|
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
@pytest.mark.parametrize("open_domain", [True, False])
|
|
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
|
|
def test_eval_elastic_retriever(document_store: BaseDocumentStore, open_domain, retriever):
|
|
# add eval data (SQUAD format)
|
|
document_store.add_eval_data(
|
|
filename="samples/squad/tiny.json",
|
|
doc_index="haystack_test_eval_document",
|
|
label_index="haystack_test_feedback",
|
|
)
|
|
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
|
|
|
|
# eval retriever
|
|
results = retriever.eval(
|
|
top_k=1, label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", open_domain=open_domain
|
|
)
|
|
assert results["recall"] == 1.0
|
|
assert results["mrr"] == 1.0
|
|
if not open_domain:
|
|
assert results["map"] == 1.0
|
|
|
|
|
|
# TODO simplify with a mock retriever and make it independent of elasticsearch documentstore
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
|
|
def test_eval_pipeline(document_store: BaseDocumentStore, reader, retriever):
|
|
# add eval data (SQUAD format)
|
|
document_store.add_eval_data(
|
|
filename="samples/squad/tiny.json",
|
|
doc_index="haystack_test_eval_document",
|
|
label_index="haystack_test_feedback",
|
|
)
|
|
|
|
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback",
|
|
drop_negative_labels=True,
|
|
drop_no_answers=False)
|
|
|
|
eval_retriever = EvalDocuments()
|
|
eval_reader = EvalAnswers(sas_model="sentence-transformers/paraphrase-MiniLM-L3-v2",debug=True)
|
|
eval_reader_cross = EvalAnswers(sas_model="cross-encoder/stsb-TinyBERT-L-4",debug=True)
|
|
eval_reader_vanila = EvalAnswers()
|
|
|
|
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
|
|
p = Pipeline()
|
|
p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
|
|
p.add_node(component=eval_retriever, name="EvalDocuments", inputs=["ESRetriever"])
|
|
p.add_node(component=reader, name="QAReader", inputs=["EvalDocuments"])
|
|
p.add_node(component=eval_reader, name="EvalAnswers", inputs=["QAReader"])
|
|
p.add_node(component=eval_reader_cross, name="EvalAnswers_cross", inputs=["QAReader"])
|
|
p.add_node(component=eval_reader_vanila, name="EvalAnswers_vanilla", inputs=["QAReader"])
|
|
for l in labels:
|
|
res = p.run(
|
|
query=l.query,
|
|
labels=l,
|
|
params={"ESRetriever":{"index": "haystack_test_eval_document"}}
|
|
)
|
|
assert eval_retriever.recall == 1.0
|
|
assert round(eval_reader.top_k_f1, 4) == 0.8333
|
|
assert eval_reader.top_k_em == 0.5
|
|
assert round(eval_reader.top_k_sas, 3) == 0.800
|
|
assert round(eval_reader_cross.top_k_sas, 3) == 0.671
|
|
assert eval_reader.top_k_em == eval_reader_vanila.top_k_em
|
|
|
|
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
|
|
def test_eval_data_split_word(document_store):
|
|
# splitting by word
|
|
preprocessor = PreProcessor(
|
|
clean_empty_lines=False,
|
|
clean_whitespace=False,
|
|
clean_header_footer=False,
|
|
split_by="word",
|
|
split_length=4,
|
|
split_overlap=0,
|
|
split_respect_sentence_boundary=False,
|
|
)
|
|
|
|
document_store.add_eval_data(
|
|
filename="samples/squad/tiny.json",
|
|
doc_index="haystack_test_eval_document",
|
|
label_index="haystack_test_feedback",
|
|
preprocessor=preprocessor,
|
|
)
|
|
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
|
|
docs = document_store.get_all_documents(index="haystack_test_eval_document")
|
|
assert len(docs) == 5
|
|
assert len(set(labels[0].document_ids)) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
|
|
def test_eval_data_split_passage(document_store):
|
|
# splitting by passage
|
|
preprocessor = PreProcessor(
|
|
clean_empty_lines=False,
|
|
clean_whitespace=False,
|
|
clean_header_footer=False,
|
|
split_by="passage",
|
|
split_length=1,
|
|
split_overlap=0,
|
|
split_respect_sentence_boundary=False
|
|
)
|
|
|
|
document_store.add_eval_data(
|
|
filename="samples/squad/tiny_passages.json",
|
|
doc_index="haystack_test_eval_document",
|
|
label_index="haystack_test_feedback",
|
|
preprocessor=preprocessor,
|
|
)
|
|
docs = document_store.get_all_documents(index="haystack_test_eval_document")
|
|
assert len(docs) == 2
|
|
assert len(docs[1].content) == 56
|
|
|
|
|
|
EVAL_LABELS = [
|
|
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
|
|
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='something_else', content_type="text", content='My name is Carla and I live in Munich'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
|
|
]
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval(reader, retriever_with_docs, tmp_path):
|
|
labels = EVAL_LABELS[:1]
|
|
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result = pipeline.eval(
|
|
labels=labels,
|
|
params={"Retriever": {"top_k": 5}},
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
reader_result = eval_result["Reader"]
|
|
retriever_result = eval_result["Retriever"]
|
|
|
|
assert reader_result[reader_result['rank'] == 1]["answer"].iloc[0] in reader_result[reader_result['rank'] == 1]["gold_answers"].iloc[0]
|
|
assert retriever_result[retriever_result['rank'] == 1]["document_id"].iloc[0] in retriever_result[retriever_result['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert metrics["Reader"]["exact_match"] == 1.0
|
|
assert metrics["Reader"]["f1"] == 1.0
|
|
assert metrics["Retriever"]["mrr"] == 1.0
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 1.0
|
|
assert metrics["Retriever"]["recall_single_hit"] == 1.0
|
|
assert metrics["Retriever"]["precision"] == 1.0/3
|
|
assert metrics["Retriever"]["map"] == 1.0
|
|
|
|
eval_result.save(tmp_path)
|
|
saved_eval_result = EvaluationResult.load(tmp_path)
|
|
metrics = saved_eval_result.calculate_metrics()
|
|
|
|
assert reader_result[reader_result['rank'] == 1]["answer"].iloc[0] in reader_result[reader_result['rank'] == 1]["gold_answers"].iloc[0]
|
|
assert retriever_result[retriever_result['rank'] == 1]["document_id"].iloc[0] in retriever_result[retriever_result['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert metrics["Reader"]["exact_match"] == 1.0
|
|
assert metrics["Reader"]["f1"] == 1.0
|
|
assert metrics["Retriever"]["mrr"] == 1.0
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 1.0
|
|
assert metrics["Retriever"]["recall_single_hit"] == 1.0
|
|
assert metrics["Retriever"]["precision"] == 1.0/3
|
|
assert metrics["Retriever"]["map"] == 1.0
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_multiple_queries(reader, retriever_with_docs, tmp_path):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
reader_result = eval_result["Reader"]
|
|
retriever_result = eval_result["Retriever"]
|
|
|
|
reader_berlin = reader_result[reader_result['query'] == "Who lives in Berlin?"]
|
|
reader_munich = reader_result[reader_result['query'] == "Who lives in Munich?"]
|
|
|
|
retriever_berlin = retriever_result[retriever_result['query'] == "Who lives in Berlin?"]
|
|
retriever_munich = retriever_result[retriever_result['query'] == "Who lives in Munich?"]
|
|
|
|
assert reader_berlin[reader_berlin['rank'] == 1]["answer"].iloc[0] in reader_berlin[reader_berlin['rank'] == 1]["gold_answers"].iloc[0]
|
|
assert retriever_berlin[retriever_berlin['rank'] == 1]["document_id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert reader_munich[reader_munich['rank'] == 1]["answer"].iloc[0] not in reader_munich[reader_munich['rank'] == 1]["gold_answers"].iloc[0]
|
|
assert retriever_munich[retriever_munich['rank'] == 1]["document_id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert metrics["Reader"]["exact_match"] == 1.0
|
|
assert metrics["Reader"]["f1"] == 1.0
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
|
|
eval_result.save(tmp_path)
|
|
saved_eval_result = EvaluationResult.load(tmp_path)
|
|
metrics = saved_eval_result.calculate_metrics()
|
|
|
|
assert reader_berlin[reader_berlin['rank'] == 1]["answer"].iloc[0] in reader_berlin[reader_berlin['rank'] == 1]["gold_answers"].iloc[0]
|
|
assert retriever_berlin[retriever_berlin['rank'] == 1]["document_id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert reader_munich[reader_munich['rank'] == 1]["answer"].iloc[0] not in reader_munich[reader_munich['rank'] == 1]["gold_answers"].iloc[0]
|
|
assert retriever_munich[retriever_munich['rank'] == 1]["document_id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert metrics["Reader"]["exact_match"] == 1.0
|
|
assert metrics["Reader"]["f1"] == 1.0
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_sas(reader, retriever_with_docs):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}},
|
|
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2"
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert metrics["Reader"]["exact_match"] == 1.0
|
|
assert metrics["Reader"]["f1"] == 1.0
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
assert "sas" in metrics["Reader"]
|
|
assert metrics["Reader"]["sas"] == pytest.approx(1.0)
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_doc_relevance_col(reader, retriever_with_docs):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}},
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics(doc_relevance_col="gold_id_or_answer_match")
|
|
|
|
assert metrics["Retriever"]["mrr"] == 1.0
|
|
assert metrics["Retriever"]["map"] == 0.75
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.75
|
|
assert metrics["Retriever"]["recall_single_hit"] == 1.0
|
|
assert metrics["Retriever"]["precision"] == 1.0/3
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_simulated_top_k_reader(reader, retriever_with_docs):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}},
|
|
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2"
|
|
)
|
|
|
|
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1)
|
|
|
|
assert metrics_top_1["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_1["Reader"]["f1"] == 0.5
|
|
assert metrics_top_1["Reader"]["sas"] == pytest.approx(0.5833, abs=1e-4)
|
|
assert metrics_top_1["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_1["Retriever"]["map"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["precision"] == 1.0/6
|
|
|
|
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_reader=2)
|
|
|
|
assert metrics_top_2["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_2["Reader"]["f1"] == 0.5
|
|
assert metrics_top_2["Reader"]["sas"] == pytest.approx(0.5833, abs=1e-4)
|
|
assert metrics_top_2["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_2["Retriever"]["map"] == 0.5
|
|
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_2["Retriever"]["precision"] == 1.0/6
|
|
|
|
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_reader=3)
|
|
|
|
assert metrics_top_3["Reader"]["exact_match"] == 1.0
|
|
assert metrics_top_3["Reader"]["f1"] == 1.0
|
|
assert metrics_top_3["Reader"]["sas"] == pytest.approx(1.0)
|
|
assert metrics_top_3["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_3["Retriever"]["map"] == 0.5
|
|
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_3["Retriever"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_simulated_top_k_retriever(reader, retriever_with_docs):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics_top_10 = eval_result.calculate_metrics()
|
|
|
|
assert metrics_top_10["Reader"]["exact_match"] == 1.0
|
|
assert metrics_top_10["Reader"]["f1"] == 1.0
|
|
assert metrics_top_10["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_10["Retriever"]["map"] == 0.5
|
|
assert metrics_top_10["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_10["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_10["Retriever"]["precision"] == 1.0/6
|
|
|
|
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_retriever=1)
|
|
|
|
assert metrics_top_1["Reader"]["exact_match"] == 1.0
|
|
assert metrics_top_1["Reader"]["f1"] == 1.0
|
|
assert metrics_top_1["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_1["Retriever"]["map"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["precision"] == 0.5
|
|
|
|
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_retriever=2)
|
|
|
|
assert metrics_top_2["Reader"]["exact_match"] == 1.0
|
|
assert metrics_top_2["Reader"]["f1"] == 1.0
|
|
assert metrics_top_2["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_2["Retriever"]["map"] == 0.5
|
|
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_2["Retriever"]["precision"] == 0.25
|
|
|
|
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_retriever=3)
|
|
|
|
assert metrics_top_3["Reader"]["exact_match"] == 1.0
|
|
assert metrics_top_3["Reader"]["f1"] == 1.0
|
|
assert metrics_top_3["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_3["Retriever"]["map"] == 0.5
|
|
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_3["Retriever"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_simulated_top_k_reader_and_retriever(reader, retriever_with_docs):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 10}}
|
|
)
|
|
|
|
metrics_top_10 = eval_result.calculate_metrics(simulated_top_k_reader=1)
|
|
|
|
assert metrics_top_10["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_10["Reader"]["f1"] == 0.5
|
|
assert metrics_top_10["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_10["Retriever"]["map"] == 0.5
|
|
assert metrics_top_10["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_10["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_10["Retriever"]["precision"] == 1.0/6
|
|
|
|
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1, simulated_top_k_retriever=1)
|
|
|
|
assert metrics_top_1["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_1["Reader"]["f1"] == 0.5
|
|
assert metrics_top_1["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_1["Retriever"]["map"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["precision"] == 0.5
|
|
|
|
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_reader=1, simulated_top_k_retriever=2)
|
|
|
|
assert metrics_top_2["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_2["Reader"]["f1"] == 0.5
|
|
assert metrics_top_2["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_2["Retriever"]["map"] == 0.5
|
|
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_2["Retriever"]["precision"] == 0.25
|
|
|
|
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_reader=1, simulated_top_k_retriever=3)
|
|
|
|
assert metrics_top_3["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_3["Reader"]["f1"] == 0.5
|
|
assert metrics_top_3["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_3["Retriever"]["map"] == 0.5
|
|
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_3["Retriever"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_isolated(reader, retriever_with_docs):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2",
|
|
add_isolated_node_eval=True
|
|
)
|
|
|
|
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1)
|
|
|
|
assert metrics_top_1["Reader"]["exact_match"] == 0.5
|
|
assert metrics_top_1["Reader"]["f1"] == 0.5
|
|
assert metrics_top_1["Reader"]["sas"] == pytest.approx(0.5833, abs=1e-4)
|
|
assert metrics_top_1["Retriever"]["mrr"] == 0.5
|
|
assert metrics_top_1["Retriever"]["map"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics_top_1["Retriever"]["precision"] == 1.0 / 6
|
|
|
|
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1, eval_mode="isolated")
|
|
|
|
assert metrics_top_1["Reader"]["exact_match"] == 1.0
|
|
assert metrics_top_1["Reader"]["f1"] == 1.0
|
|
assert metrics_top_1["Reader"]["sas"] == pytest.approx(1.0, abs=1e-4)
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_wrong_examples(reader, retriever_with_docs):
|
|
|
|
labels = [
|
|
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
|
|
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Pete", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='something_else', content_type="text", content='My name is Pete and I live in Munich'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
|
|
]
|
|
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=labels,
|
|
params={"Retriever": {"top_k": 5}},
|
|
)
|
|
|
|
wrongs_retriever = eval_result.wrong_examples(node="Retriever", n=1)
|
|
wrongs_reader = eval_result.wrong_examples(node="Reader", n=1)
|
|
|
|
assert len(wrongs_retriever) == 1
|
|
assert len(wrongs_reader) == 1
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_print_eval_report(reader, retriever_with_docs):
|
|
|
|
labels = [
|
|
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
|
|
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Pete", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='something_else', content_type="text", content='My name is Pete and I live in Munich'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
|
|
]
|
|
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=labels,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
pipeline.print_eval_report(eval_result)
|
|
|
|
# in addition with labels as input to reader node rather than output of retriever node
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=labels,
|
|
params={"Retriever": {"top_k": 5}},
|
|
add_isolated_node_eval=True
|
|
)
|
|
pipeline.print_eval_report(eval_result)
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_document_search_calculate_metrics(retriever_with_docs):
|
|
pipeline = DocumentSearchPipeline(retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "Retriever" in eval_result
|
|
assert len(eval_result) == 1
|
|
retriever_result = eval_result["Retriever"]
|
|
retriever_berlin = retriever_result[retriever_result['query'] == "Who lives in Berlin?"]
|
|
retriever_munich = retriever_result[retriever_result['query'] == "Who lives in Munich?"]
|
|
|
|
assert retriever_berlin[retriever_berlin['rank'] == 1]["document_id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert retriever_munich[retriever_munich['rank'] == 1]["document_id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_faq_calculate_metrics(retriever_with_docs):
|
|
pipeline = FAQPipeline(retriever=retriever_with_docs)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "Retriever" in eval_result
|
|
assert "Docs2Answers" in eval_result
|
|
assert len(eval_result) == 2
|
|
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
assert metrics["Docs2Answers"]["exact_match"] == 0.0
|
|
assert metrics["Docs2Answers"]["f1"] == 0.0
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_extractive_qa_eval_translation(reader, retriever_with_docs, de_to_en_translator):
|
|
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
|
|
pipeline = TranslationWrapperPipeline(input_translator=de_to_en_translator, output_translator=de_to_en_translator, pipeline=pipeline)
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "Retriever" in eval_result
|
|
assert "Reader" in eval_result
|
|
assert "OutputTranslator" in eval_result
|
|
assert len(eval_result) == 3
|
|
|
|
assert metrics["Reader"]["exact_match"] == 1.0
|
|
assert metrics["Reader"]["f1"] == 1.0
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
|
|
assert metrics["OutputTranslator"]["exact_match"] == 1.0
|
|
assert metrics["OutputTranslator"]["f1"] == 1.0
|
|
assert metrics["OutputTranslator"]["mrr"] == 0.5
|
|
assert metrics["OutputTranslator"]["map"] == 0.5
|
|
assert metrics["OutputTranslator"]["recall_multi_hit"] == 0.5
|
|
assert metrics["OutputTranslator"]["recall_single_hit"] == 0.5
|
|
assert metrics["OutputTranslator"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
|
|
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
|
|
def test_question_generation_eval(retriever_with_docs, question_generator):
|
|
pipeline = RetrieverQuestionGenerationPipeline(retriever=retriever_with_docs, question_generator=question_generator)
|
|
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=EVAL_LABELS,
|
|
params={"Retriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "Retriever" in eval_result
|
|
assert "Question Generator" in eval_result
|
|
assert len(eval_result) == 2
|
|
|
|
assert metrics["Retriever"]["mrr"] == 0.5
|
|
assert metrics["Retriever"]["map"] == 0.5
|
|
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Retriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["Retriever"]["precision"] == 1.0/6
|
|
|
|
assert metrics["Question Generator"]["mrr"] == 0.5
|
|
assert metrics["Question Generator"]["map"] == 0.5
|
|
assert metrics["Question Generator"]["recall_multi_hit"] == 0.5
|
|
assert metrics["Question Generator"]["recall_single_hit"] == 0.5
|
|
assert metrics["Question Generator"]["precision"] == 1.0/6
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
def test_qa_multi_retriever_pipeline_eval(document_store_with_docs, reader):
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
|
|
dpr_retriever = DensePassageRetriever(document_store_with_docs)
|
|
document_store_with_docs.update_embeddings(retriever=dpr_retriever)
|
|
|
|
# QA Pipeline with two retrievers, we always want QA output
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
pipeline.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
|
|
|
|
# EVAL_QUERIES: 2 go dpr way
|
|
# in Berlin goes es way
|
|
labels = EVAL_LABELS + [
|
|
MultiLabel(labels=[Label(query="in Berlin", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
|
|
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
|
|
]
|
|
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=labels,
|
|
params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "ESRetriever" in eval_result
|
|
assert "DPRRetriever" in eval_result
|
|
assert "QAReader" in eval_result
|
|
assert len(eval_result) == 3
|
|
|
|
assert metrics["DPRRetriever"]["mrr"] == 0.5
|
|
assert metrics["DPRRetriever"]["map"] == 0.5
|
|
assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["DPRRetriever"]["precision"] == 1.0/6
|
|
|
|
assert metrics["ESRetriever"]["mrr"] == 1.0
|
|
assert metrics["ESRetriever"]["map"] == 1.0
|
|
assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
|
|
assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
|
|
assert metrics["ESRetriever"]["precision"] == 1.0/3
|
|
|
|
assert metrics["QAReader"]["exact_match"] == 1.0
|
|
assert metrics["QAReader"]["f1"] == 1.0
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
def test_multi_retriever_pipeline_eval(document_store_with_docs, reader):
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
|
|
dpr_retriever = DensePassageRetriever(document_store_with_docs)
|
|
document_store_with_docs.update_embeddings(retriever=dpr_retriever)
|
|
|
|
# QA Pipeline with two retrievers, no QA output
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
|
|
# EVAL_QUERIES: 2 go dpr way
|
|
# in Berlin goes es way
|
|
labels = EVAL_LABELS + [
|
|
MultiLabel(labels=[Label(query="in Berlin", answer=None,
|
|
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
|
|
]
|
|
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=labels,
|
|
params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "ESRetriever" in eval_result
|
|
assert "DPRRetriever" in eval_result
|
|
assert len(eval_result) == 2
|
|
|
|
assert metrics["DPRRetriever"]["mrr"] == 0.5
|
|
assert metrics["DPRRetriever"]["map"] == 0.5
|
|
assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["DPRRetriever"]["precision"] == 1.0/6
|
|
|
|
assert metrics["ESRetriever"]["mrr"] == 1.0
|
|
assert metrics["ESRetriever"]["map"] == 1.0
|
|
assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
|
|
assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
|
|
assert metrics["ESRetriever"]["precision"] == 1.0/3
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
def test_multi_retriever_pipeline_with_asymmetric_qa_eval(document_store_with_docs, reader):
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
|
|
dpr_retriever = DensePassageRetriever(document_store_with_docs)
|
|
document_store_with_docs.update_embeddings(retriever=dpr_retriever)
|
|
|
|
# QA Pipeline with two retrievers, we only get QA output from dpr
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
|
pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
|
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
|
|
pipeline.add_node(component=reader, name="QAReader", inputs=["DPRRetriever"])
|
|
|
|
# EVAL_QUERIES: 2 go dpr way
|
|
# in Berlin goes es way
|
|
labels = EVAL_LABELS + [
|
|
MultiLabel(labels=[Label(query="in Berlin", answer=None,
|
|
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
|
|
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
|
|
]
|
|
|
|
eval_result: EvaluationResult = pipeline.eval(
|
|
labels=labels,
|
|
params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
|
|
)
|
|
|
|
metrics = eval_result.calculate_metrics()
|
|
|
|
assert "ESRetriever" in eval_result
|
|
assert "DPRRetriever" in eval_result
|
|
assert "DPRRetriever" in eval_result
|
|
assert "QAReader" in eval_result
|
|
assert len(eval_result) == 3
|
|
|
|
assert metrics["DPRRetriever"]["mrr"] == 0.5
|
|
assert metrics["DPRRetriever"]["map"] == 0.5
|
|
assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
|
|
assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
|
|
assert metrics["DPRRetriever"]["precision"] == 1.0/6
|
|
|
|
assert metrics["ESRetriever"]["mrr"] == 1.0
|
|
assert metrics["ESRetriever"]["map"] == 1.0
|
|
assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
|
|
assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
|
|
assert metrics["ESRetriever"]["precision"] == 1.0/3
|
|
|
|
assert metrics["QAReader"]["exact_match"] == 1.0
|
|
assert metrics["QAReader"]["f1"] == 1.0
|