mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 01:39:45 +00:00 
			
		
		
		
	 54518ac790
			
		
	
	
		54518ac790
		
			
		
	
	
	
	
		
			
			* Refactor document fixtures * Add embedding files * Update Documentation & Code Style * Indentation issue * Update Documentation & Code Style * Fix type conversion in conftest.py * Update Documentation & Code Style * mypy on sql.py * mypy on crawler.py * mypy on pinecone.py * Adapt retriever tests * Update Documentation & Code Style * mypy on crawler.py * Update Documentation & Code Style * mypy on crawler.py again * Update Documentation & Code Style * mypy fix was too rough * Fix some more tests * Update Documentation & Code Style * Skip meaningless test on FilterRetriever * Make embedding values less specific * Update Documentation & Code Style * Use stable IDs in retriever tests that depend on it * Remove needless fixtures * docs_with_ids * Update Documentation & Code Style * Typo * Fix retriever tests * Fix reader tests * Update Documentation & Code Style * Workaround #2626 * Update Documentation & Code Style * Fix label generator tests * Reorder vectors * remove print * Update Documentation & Code Style * Update Documentation & Code Style * git tags leftover * Update Documentation & Code Style * fix last failing test Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
		
			
				
	
	
		
			136 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			136 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import List
 | |
| from pathlib import Path
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from haystack import Document
 | |
| from haystack.document_stores import BaseDocumentStore
 | |
| from haystack.nodes import QuestionGenerator, EmbeddingRetriever, PseudoLabelGenerator
 | |
| 
 | |
| 
 | |
| @pytest.mark.generator
 | |
| @pytest.mark.integration
 | |
| @pytest.mark.parametrize("document_store", ["memory"], indirect=True)
 | |
| @pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
 | |
| def test_pseudo_label_generator(
 | |
|     document_store: BaseDocumentStore,
 | |
|     retriever: EmbeddingRetriever,
 | |
|     question_generator: QuestionGenerator,
 | |
|     docs_with_true_emb: List[Document],
 | |
| ):
 | |
|     document_store.write_documents(docs_with_true_emb)
 | |
|     psg = PseudoLabelGenerator(question_generator, retriever)
 | |
|     train_examples = []
 | |
|     output, _ = psg.run(documents=document_store.get_all_documents())
 | |
|     assert "gpl_labels" in output
 | |
|     for item in output["gpl_labels"]:
 | |
|         assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
 | |
|         train_examples.append(item)
 | |
| 
 | |
|     assert len(train_examples) > 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.generator
 | |
| @pytest.mark.integration
 | |
| @pytest.mark.parametrize("document_store", ["memory"], indirect=True)
 | |
| @pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
 | |
| def test_pseudo_label_generator_batch(
 | |
|     document_store: BaseDocumentStore,
 | |
|     retriever: EmbeddingRetriever,
 | |
|     question_generator: QuestionGenerator,
 | |
|     docs_with_true_emb: List[Document],
 | |
| ):
 | |
|     document_store.write_documents(docs_with_true_emb)
 | |
|     psg = PseudoLabelGenerator(question_generator, retriever)
 | |
|     train_examples = []
 | |
| 
 | |
|     output, _ = psg.run_batch(documents=document_store.get_all_documents())
 | |
|     assert "gpl_labels" in output
 | |
|     for item in output["gpl_labels"]:
 | |
|         assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
 | |
|         train_examples.append(item)
 | |
| 
 | |
|     assert len(train_examples) > 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.generator
 | |
| @pytest.mark.integration
 | |
| @pytest.mark.parametrize("document_store", ["memory"], indirect=True)
 | |
| @pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
 | |
| def test_pseudo_label_generator_using_question_document_pairs(
 | |
|     document_store: BaseDocumentStore, retriever: EmbeddingRetriever, docs_with_true_emb: List[Document]
 | |
| ):
 | |
|     document_store.write_documents(docs_with_true_emb)
 | |
|     docs = [
 | |
|         {
 | |
|             "question": "What is the capital of Germany?",
 | |
|             "document": "Berlin is the capital and largest city of Germany by both area and population.",
 | |
|         },
 | |
|         {
 | |
|             "question": "What is the largest city in Germany by population and area?",
 | |
|             "document": "Berlin is the capital and largest city of Germany by both area and population.",
 | |
|         },
 | |
|     ]
 | |
|     psg = PseudoLabelGenerator(docs, retriever)
 | |
|     train_examples = []
 | |
|     output, _ = psg.run(documents=document_store.get_all_documents())
 | |
|     assert "gpl_labels" in output
 | |
|     for item in output["gpl_labels"]:
 | |
|         assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
 | |
|         train_examples.append(item)
 | |
| 
 | |
|     assert len(train_examples) > 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.generator
 | |
| @pytest.mark.integration
 | |
| @pytest.mark.parametrize("document_store", ["memory"], indirect=True)
 | |
| @pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
 | |
| def test_pseudo_label_generator_using_question_document_pairs_batch(
 | |
|     document_store: BaseDocumentStore, retriever: EmbeddingRetriever, docs_with_true_emb: List[Document]
 | |
| ):
 | |
|     document_store.write_documents(docs_with_true_emb)
 | |
|     docs = [
 | |
|         {
 | |
|             "question": "What is the capital of Germany?",
 | |
|             "document": "Berlin is the capital and largest city of Germany by both area and population.",
 | |
|         },
 | |
|         {
 | |
|             "question": "What is the largest city in Germany by population and area?",
 | |
|             "document": "Berlin is the capital and largest city of Germany by both area and population.",
 | |
|         },
 | |
|     ]
 | |
|     psg = PseudoLabelGenerator(docs, retriever)
 | |
|     train_examples = []
 | |
| 
 | |
|     output, _ = psg.run_batch(documents=document_store.get_all_documents())
 | |
|     assert "gpl_labels" in output
 | |
|     for item in output["gpl_labels"]:
 | |
|         assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
 | |
|         train_examples.append(item)
 | |
| 
 | |
|     assert len(train_examples) > 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.generator
 | |
| @pytest.mark.integration
 | |
| @pytest.mark.parametrize("document_store", ["memory"], indirect=True)
 | |
| @pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
 | |
| def test_training_and_save(retriever: EmbeddingRetriever, tmp_path: Path):
 | |
|     train_examples = [
 | |
|         {
 | |
|             "question": "What is the capital of Germany?",
 | |
|             "pos_doc": "Berlin is the capital and largest city of Germany by both area and population.",
 | |
|             "neg_doc": "The capital of Germany is the city state of Berlin.",
 | |
|             "score": -2.2788997,
 | |
|         },
 | |
|         {
 | |
|             "question": "What is the largest city in Germany by population and area?",
 | |
|             "pos_doc": "Berlin is the capital and largest city of Germany by both area and population.",
 | |
|             "neg_doc": "The capital of Germany is the city state of Berlin.",
 | |
|             "score": 7.0911007,
 | |
|         },
 | |
|     ]
 | |
|     retriever.train(train_examples)
 | |
|     retriever.save(tmp_path)
 |