haystack/tutorials/Tutorial14_Query_Classifier.py
Sara Zan 91cafb49bb
Improve tutorials' output (#1694)
* Modify __str__ and __repr__ for Document and Answer

* Rename QueryClassifier in Tutorial11

* Improve the output of tutorial1

* Make the output of Tutorial8 a bit less dense

* Add a print_questions util to print the output of question generating pipelines

* Replace custom printing with the new utility in Tutorial13

* Ensure all output is printed with minimal details in Tutorial14 and add some titles

* Minor change to print_answers

* Make tutorial3's output the same as tutorial1

* Add __repr__ to Answer and fix to_dict()

* Fix a bug in the Document and Answer's __str__ method

* Improve print_answers, print_documents and print_questions

* Using print_answers in Tutorial7 and fixing typo in the utils

* Remove duplicate line in Tutorial12

* Use print_answers in Tutorial4

* Add explanation of what the documents in the output of the basic QA pipeline are

* Move the fields constant into print_answers

* Normalize all 'minimal' to 'minimum' (they were mixed up)

* Improve the sample output to include all fields from Document and Answer

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-11-09 15:09:26 +01:00

221 lines
9.0 KiB
Python

import os
from subprocess import Popen, PIPE, STDOUT
from haystack.utils import fetch_archive_from_http, convert_files_to_dicts, clean_wiki_text, launch_es, print_answers
from haystack.pipelines import Pipeline, RootNode
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.nodes import ElasticsearchRetriever, DensePassageRetriever, FARMReader, TransformersQueryClassifier, SklearnQueryClassifier
def tutorial14_query_classifier():
#Download and prepare data - 517 Wikipedia articles for Game of Thrones
doc_dir = "data/article_txt_got"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# convert files to dicts containing documents that can be indexed to our datastore
got_dicts = convert_files_to_dicts(
dir_path=doc_dir,
clean_func=clean_wiki_text,
split_paragraphs=True
)
# Initialize DocumentStore and index documents
launch_es()
document_store = ElasticsearchDocumentStore()
document_store.delete_documents()
document_store.write_documents(got_dicts)
# Initialize Sparse retriever
es_retriever = ElasticsearchRetriever(document_store=document_store)
# Initialize dense retriever
dpr_retriever = DensePassageRetriever(document_store)
document_store.update_embeddings(dpr_retriever, update_existing_embeddings=False)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
print()
print("Sklearn keyword classifier")
print("==========================")
# Here we build the pipeline
sklearn_keyword_classifier = Pipeline()
sklearn_keyword_classifier.add_node(component=SklearnQueryClassifier(), name="QueryClassifier", inputs=["Query"])
sklearn_keyword_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
sklearn_keyword_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
sklearn_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
sklearn_keyword_classifier.draw("pipeline_classifier.png")
# Run only the dense retriever on the full sentence query
res_1 = sklearn_keyword_classifier.run(
query="Who is the father of Arya Stark?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_1, details="minimum")
# Run only the sparse retriever on a keyword based query
res_2 = sklearn_keyword_classifier.run(
query="arya stark father",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_2, details="minimum")
# Run only the dense retriever on the full sentence query
res_3 = sklearn_keyword_classifier.run(
query="which country was jon snow filmed ?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_3, details="minimum")
# Run only the sparse retriever on a keyword based query
res_4 = sklearn_keyword_classifier.run(
query="jon snow country",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_4, details="minimum")
# Run only the dense retriever on the full sentence query
res_5 = sklearn_keyword_classifier.run(
query="who are the younger brothers of arya stark ?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_5, details="minimum")
# Run only the sparse retriever on a keyword based query
res_6 = sklearn_keyword_classifier.run(
query="arya stark younger brothers",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_6, details="minimum")
print()
print("Transformer keyword classifier")
print("==============================")
# Here we build the pipeline
transformer_keyword_classifier = Pipeline()
transformer_keyword_classifier.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
transformer_keyword_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
transformer_keyword_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
transformer_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
transformer_keyword_classifier.draw("pipeline_classifier.png")
# Run only the dense retriever on the full sentence query
res_1 = transformer_keyword_classifier.run(
query="Who is the father of Arya Stark?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_1, details="minimum")
# Run only the sparse retriever on a keyword based query
res_2 = transformer_keyword_classifier.run(
query="arya stark father",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_2, details="minimum")
# Run only the dense retriever on the full sentence query
res_3 = transformer_keyword_classifier.run(
query="which country was jon snow filmed ?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_3, details="minimum")
# Run only the sparse retriever on a keyword based query
res_4 = transformer_keyword_classifier.run(
query="jon snow country",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_4, details="minimum")
# Run only the dense retriever on the full sentence query
res_5 = transformer_keyword_classifier.run(
query="who are the younger brothers of arya stark ?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_5, details="minimum")
# Run only the sparse retriever on a keyword based query
res_6 = transformer_keyword_classifier.run(
query="arya stark younger brothers",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_6, details="minimum")
print()
print("Transformer question classifier")
print("===============================")
# Here we build the pipeline
transformer_question_classifier = Pipeline()
transformer_question_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["Query"])
transformer_question_classifier.add_node(component=TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier"), name="QueryClassifier", inputs=["DPRRetriever"])
transformer_question_classifier.add_node(component=reader, name="QAReader", inputs=["QueryClassifier.output_1"])
transformer_question_classifier.draw("question_classifier.png")
# Run only the QA reader on the question query
res_1 = transformer_question_classifier.run(
query="Who is the father of Arya Stark?",
)
print("\n===============================")
print("DPR Results" + "\n" + "="*15)
print_answers(res_1, details="minimum")
# Show only DPR results
res_2 = transformer_question_classifier.run(
query="Arya Stark was the daughter of a Lord.",
)
print("\n===============================")
print("ES Results" + "\n" + "="*15)
print_answers(res_2, details="minimum")
# Here we create the keyword vs question/statement query classifier
queries = ["arya stark father","jon snow country",
"who is the father of arya stark","which country was jon snow filmed?"]
keyword_classifier = TransformersQueryClassifier()
for query in queries:
result = keyword_classifier.run(query=query)
if result[1] == "output_1":
category = "question/statement"
else:
category = "keyword"
print(f"Query: {query}, raw_output: {result}, class: {category}")
# Here we create the question vs statement query classifier
queries = ["Lord Eddard was the father of Arya Stark.","Jon Snow was filmed in United Kingdom.",
"who is the father of arya stark?","Which country was jon snow filmed in?"]
question_classifier = TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier")
for query in queries:
result = question_classifier.run(query=query)
if result[1] == "output_1":
category = "question"
else:
category = "statement"
print(f"Query: {query}, raw_output: {result}, class: {category}")
if __name__ == "__main__":
tutorial14_query_classifier()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/