haystack/test/utils/test_hf.py
Guna Palanivel 9082c97155
feat: Add reasoning support for HuggingFaceAPIChatGenerator (#9701) (#10248)
* feat: add reasoning support for HuggingFaceAPIChatGenerator

Add reasoning field extraction for both streaming and non-streaming modes
in HuggingFaceAPIChatGenerator, aligning with the parent issue #9700
initiative to standardize reasoning support across all ChatGenerators.

Changes:
- Extract reasoning from choice.message.reasoning in non-streaming mode
- Extract reasoning from choice.delta.reasoning in streaming mode
- Accumulate reasoning chunks in streaming and create final ReasoningContent
- Add backward compatibility check using hasattr() for API responses
- Add 11 comprehensive tests covering all reasoning scenarios

The reasoning content is stored in ChatMessage.reasoning field (not meta),
following the pattern established in PR #9696.

Closes #9701
Ref #9700

* fix: skip ReasoningContent in convert_message_to_hf_format for multi-turn

Address PR review feedback:
- Update convert_message_to_hf_format to explicitly skip ReasoningContent
  during conversion (HF API doesn't support reasoning in input messages)
- Add multi-turn integration test with reasoning model
- Add unit tests for ReasoningContent handling in conversion

* fix: use reStructuredText formatting in release note

Convert Markdown to reStructuredText:
- Use double backticks for inline code
- Use .. code:: python directive for code blocks

* refactor: extract common reasoning extraction logic into helper function

Address review feedback from @mpangrazzi:
- Extract duplicated reasoning extraction code into _extract_reasoning_content()
- Use helper function in streaming, sync, and async methods
- Shorten release note to be more concise

* test: increase max_tokens to 300 in multi-turn HuggingFaceAPIChatGenerator integration test for stability

---------

Co-authored-by: Michele Pangrazzi <xmikex83@gmail.com>
2025-12-19 14:28:50 +01:00

152 lines
5.9 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import logging
import pytest
from haystack.dataclasses import ChatMessage, ChatRole, ImageContent, ReasoningContent, TextContent, ToolCall
from haystack.dataclasses.chat_message import ToolCallResult
from haystack.utils.device import ComponentDevice
from haystack.utils.hf import convert_message_to_hf_format, resolve_hf_device_map
def test_resolve_hf_device_map_only_device():
model_kwargs = resolve_hf_device_map(device=None, model_kwargs={})
assert model_kwargs["device_map"] == ComponentDevice.resolve_device(None).to_hf()
def test_resolve_hf_device_map_only_device_map():
model_kwargs = resolve_hf_device_map(device=None, model_kwargs={"device_map": "cpu"})
assert model_kwargs["device_map"] == "cpu"
def test_resolve_hf_device_map_device_and_device_map(caplog):
with caplog.at_level(logging.WARNING):
model_kwargs = resolve_hf_device_map(
device=ComponentDevice.from_str("cpu"), model_kwargs={"device_map": "cuda:0"}
)
assert "The parameters `device` and `device_map` from `model_kwargs` are both provided." in caplog.text
assert model_kwargs["device_map"] == "cuda:0"
def test_convert_message_to_hf_format():
message = ChatMessage.from_system("You are good assistant")
assert convert_message_to_hf_format(message) == {"role": "system", "content": "You are good assistant"}
message = ChatMessage.from_user("I have a question")
assert convert_message_to_hf_format(message) == {"role": "user", "content": "I have a question"}
message = ChatMessage.from_assistant(text="I have an answer", meta={"finish_reason": "stop"})
assert convert_message_to_hf_format(message) == {"role": "assistant", "content": "I have an answer"}
message = ChatMessage.from_assistant(
tool_calls=[ToolCall(id="123", tool_name="weather", arguments={"city": "Paris"})]
)
assert convert_message_to_hf_format(message) == {
"role": "assistant",
"content": "",
"tool_calls": [
{"id": "123", "type": "function", "function": {"name": "weather", "arguments": {"city": "Paris"}}}
],
}
message = ChatMessage.from_assistant(tool_calls=[ToolCall(tool_name="weather", arguments={"city": "Paris"})])
assert convert_message_to_hf_format(message) == {
"role": "assistant",
"content": "",
"tool_calls": [{"type": "function", "function": {"name": "weather", "arguments": {"city": "Paris"}}}],
}
tool_result = {"weather": "sunny", "temperature": "25"}
message = ChatMessage.from_tool(
tool_result=tool_result, origin=ToolCall(id="123", tool_name="weather", arguments={"city": "Paris"})
)
assert convert_message_to_hf_format(message) == {"role": "tool", "content": tool_result, "tool_call_id": "123"}
message = ChatMessage.from_tool(
tool_result=tool_result, origin=ToolCall(tool_name="weather", arguments={"city": "Paris"})
)
assert convert_message_to_hf_format(message) == {"role": "tool", "content": tool_result}
def test_convert_message_to_hf_invalid():
message = ChatMessage(_role=ChatRole.ASSISTANT, _content=[])
with pytest.raises(ValueError):
convert_message_to_hf_format(message)
message = ChatMessage(
_role=ChatRole.USER,
_content=[
TextContent(text="I have an answer"),
ToolCallResult(
result="result!",
origin=ToolCall(id="123", tool_name="weather", arguments={"city": "Paris"}),
error=None,
),
],
)
with pytest.raises(ValueError):
convert_message_to_hf_format(message)
def test_convert_message_to_hf_format_with_multiple_images(base64_image_string):
image1 = ImageContent(base64_image=base64_image_string)
image2 = ImageContent(base64_image=base64_image_string)
message = ChatMessage.from_user(content_parts=["Compare these images", image1, image2])
result = convert_message_to_hf_format(message)
expected = {
"role": "user",
"content": [
{"type": "text", "text": "Compare these images"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image_string}"}},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image_string}"}},
],
}
assert result == expected
def test_convert_message_to_hf_format_skips_reasoning_content():
"""
Test that ReasoningContent is properly skipped during conversion.
ReasoningContent is for human transparency only and is not sent to the HuggingFace API
because the API (which follows OpenAI-compatible format) does not support reasoning
in input messages.
"""
# Assistant message with text and reasoning
message = ChatMessage(
_role=ChatRole.ASSISTANT,
_content=[
TextContent(text="The answer is 42."),
ReasoningContent(reasoning_text="Let me think step by step..."),
],
)
result = convert_message_to_hf_format(message)
# ReasoningContent should be skipped, only text should be in the output
assert result == {"role": "assistant", "content": "The answer is 42."}
def test_convert_message_to_hf_format_with_tool_call_and_reasoning():
"""
Test that ReasoningContent is skipped when message contains tool calls.
"""
message = ChatMessage(
_role=ChatRole.ASSISTANT,
_content=[
ReasoningContent(reasoning_text="I need to check the weather."),
ToolCall(id="123", tool_name="weather", arguments={"city": "Paris"}),
],
)
result = convert_message_to_hf_format(message)
# ReasoningContent should be skipped
assert result == {
"role": "assistant",
"content": "",
"tool_calls": [
{"id": "123", "type": "function", "function": {"name": "weather", "arguments": {"city": "Paris"}}}
],
}