haystack/test/test_reader.py
Sara Zan a59bca3661
Apply black formatting (#2115)
* Testing black on ui/

* Applying black on docstores

* Add latest docstring and tutorial changes

* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too

* Remove comments

* Relax constraints on pydoc-markdown

* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade

* Fix a couple of bugs

* Add a type: ignore that was missing somehow

* Give path to black

* Apply Black

* Apply Black

* Relocate a couple of type: ignore

* Update documentation

* Make Linux CI run after applying Black

* Triggering Black

* Apply Black

* Remove dependency, does not work well

* Remove manually double trailing commas

* Update documentation

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-02-03 13:43:18 +01:00

170 lines
7.3 KiB
Python

import math
import pytest
from haystack.schema import Document, Answer
from haystack.nodes.reader.base import BaseReader
from haystack.nodes.reader.farm import FARMReader
def test_reader_basic(reader):
assert reader is not None
assert isinstance(reader, BaseReader)
def test_output(prediction):
assert prediction is not None
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
assert prediction["answers"][0].offsets_in_context[0].start == 11
assert prediction["answers"][0].offsets_in_context[0].end == 16
assert prediction["answers"][0].score <= 1
assert prediction["answers"][0].score >= 0
assert prediction["answers"][0].context == "My name is Carla and I live in Berlin"
assert len(prediction["answers"]) == 5
@pytest.mark.slow
def test_no_answer_output(no_answer_prediction):
assert no_answer_prediction is not None
assert no_answer_prediction["query"] == "What is the meaning of life?"
assert math.isclose(no_answer_prediction["no_ans_gap"], -13.048564434051514, rel_tol=0.0001)
assert no_answer_prediction["answers"][0].answer == ""
assert no_answer_prediction["answers"][0].offsets_in_context[0].start == 0
assert no_answer_prediction["answers"][0].offsets_in_context[0].end == 0
assert no_answer_prediction["answers"][0].score <= 1
assert no_answer_prediction["answers"][0].score >= 0
assert no_answer_prediction["answers"][0].context == None
assert no_answer_prediction["answers"][0].document_id == None
answers = [x.answer for x in no_answer_prediction["answers"]]
assert answers.count("") == 1
assert len(no_answer_prediction["answers"]) == 5
# TODO Directly compare farm and transformers reader outputs
# TODO checks to see that model is responsive to input arguments e.g. context_window_size - topk
@pytest.mark.slow
def test_prediction_attributes(prediction):
# TODO FARM's prediction also has no_ans_gap
attributes_gold = ["query", "answers"]
for ag in attributes_gold:
assert ag in prediction
@pytest.mark.slow
def test_model_download_options():
# download disabled and model is not cached locally
with pytest.raises(OSError):
impossible_reader = FARMReader("mfeb/albert-xxlarge-v2-squad2", local_files_only=True, num_processes=0)
def test_answer_attributes(prediction):
# TODO Transformers answer also has meta key
answer = prediction["answers"][0]
assert type(answer) == Answer
attributes_gold = ["answer", "score", "context", "offsets_in_context", "offsets_in_document", "type"]
for ag in attributes_gold:
assert getattr(answer, ag, None) is not None
@pytest.mark.slow
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("window_size", [10, 15, 20])
def test_context_window_size(reader, test_docs_xs, window_size):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
assert isinstance(reader, FARMReader)
old_window_size = reader.inferencer.model.prediction_heads[0].context_window_size
reader.inferencer.model.prediction_heads[0].context_window_size = window_size
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=5)
for answer in prediction["answers"]:
# If the extracted answer is larger than the context window, the context window is expanded.
# If the extracted answer is odd in length, the resulting context window is one less than context_window_size
# due to rounding (See FARM's QACandidate)
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
if len(answer.answer) <= window_size:
assert len(answer.context) in [window_size, window_size - 1]
else:
assert len(answer.answer) == len(answer.context)
reader.inferencer.model.prediction_heads[0].context_window_size = old_window_size
# TODO Need to test transformers reader
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("top_k", [2, 5, 10])
def test_top_k(reader, test_docs_xs, top_k):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
assert isinstance(reader, FARMReader)
old_top_k_per_candidate = reader.top_k_per_candidate
reader.top_k_per_candidate = 4
reader.inferencer.model.prediction_heads[0].n_best = reader.top_k_per_candidate + 1
try:
old_top_k_per_sample = reader.inferencer.model.prediction_heads[0].n_best_per_sample
reader.inferencer.model.prediction_heads[0].n_best_per_sample = 4
except:
print("WARNING: Could not set `top_k_per_sample` in FARM. Please update FARM version.")
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=top_k)
assert len(prediction["answers"]) == top_k
reader.top_k_per_candidate = old_top_k_per_candidate
reader.inferencer.model.prediction_heads[0].n_best = reader.top_k_per_candidate + 1
try:
reader.inferencer.model.prediction_heads[0].n_best_per_sample = old_top_k_per_sample
except:
print("WARNING: Could not set `top_k_per_sample` in FARM. Please update FARM version.")
def test_farm_reader_update_params(test_docs_xs):
reader = FARMReader(
model_name_or_path="deepset/roberta-base-squad2", use_gpu=False, no_ans_boost=0, num_processes=0
)
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
# original reader
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert prediction["answers"][0].answer == "Carla"
# update no_ans_boost
reader.update_parameters(
context_window_size=100, no_ans_boost=100, return_no_answer=True, max_seq_len=384, doc_stride=128
)
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert prediction["answers"][0].answer == ""
# update no_ans_boost
reader.update_parameters(
context_window_size=100, no_ans_boost=0, return_no_answer=False, max_seq_len=384, doc_stride=128
)
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert None not in [ans.answer for ans in prediction["answers"]]
# update context_window_size
reader.update_parameters(context_window_size=6, no_ans_boost=-10, max_seq_len=384, doc_stride=128)
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
assert len(prediction["answers"]) == 3
assert len(prediction["answers"][0].context) == 6
# update doc_stride with invalid value
with pytest.raises(Exception):
reader.update_parameters(context_window_size=100, no_ans_boost=-10, max_seq_len=384, doc_stride=999)
reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
# update max_seq_len with invalid value
with pytest.raises(Exception):
reader.update_parameters(context_window_size=6, no_ans_boost=-10, max_seq_len=99, doc_stride=128)
reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)