haystack/test/test_elastic_retriever.py
Lalit Pagaria f13443054a
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484)
* Adding dummy generator implementation

* Adding tutorial to try the model

* Committing current non working code

* Committing current update where we need to call generate function directly and need to convert embedding to tensor way

* Addressing review comments.

* Refactoring finder, and implementing rag_generator class.

* Refined the implementation of RAGGenerator and now it is in clean shape

* Renaming RAGGenerator to RAGenerator

* Reverting change from finder.py and addressing review comments

* Remove support for RagSequenceForGeneration

* Utilizing embed_passage function from DensePassageRetriever

* Adding sample test data to verify generator output

* Updating testing script

* Updating testing script

* Fixing bug related to top_k

* Updating latest farm dependency

* Comment out farm dependency

* Reverting changes from TransformersReader

* Adding transformers dataset to compare transformers and haystack generator implementation

* Using generator_encoder instead of question_encoder to generate context_input_ids

* Adding workaround to install FARM dependency from master branch

* Removing unnecessary changes

* Fixing generator test

* Removing transformers datasets

* Fixing generator test

* Some cleanup and updating TODO comments

* Adding tutorial notebook

* Updating tutorials with comments

* Explicitly passing token model in RAG test

* Addressing review comments

* Fixing notebook

* Refactoring tests to reduce memory footprint

* Split generator tests in separate ci step and before running it reclaim memory by terminating containers

* Moving tika dependent test to separate dir

* Remove unwanted code

* Brining reader under session scope

* Farm is now session object hence restoring changes from default value

* Updating assert for pdf converter

* Dummy commit to trigger CI flow

* REducing memory footprint required for generator tests

* Fixing mypy issues

* Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits

* reducing changes

* Fixing CI

* changing elastic search ci

* Fixing test error

* Disabling return of embedding

* Marking generator test as well

* Refactoring tutorials

* Increasing ES memory to 750M

* Trying another fix for ES CI

* Reverting CI changes

* Splitting tests in CI

* Generator and non-generator markers split

* Adding pytest.ini to add markers and enable strict-markers option

* Reducing elastic search container memory

* Simplifying generator test by using documents with embedding directly

* Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00

36 lines
1.7 KiB
Python

import pytest
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store_with_docs", [("elasticsearch")], indirect=True)
@pytest.mark.parametrize("retriever_with_docs", ["elasticsearch"], indirect=True)
def test_elasticsearch_retrieval(retriever_with_docs, document_store_with_docs):
res = retriever_with_docs.retrieve(query="Who lives in Berlin?")
assert res[0].text == "My name is Carla and I live in Berlin"
assert len(res) == 3
assert res[0].meta["name"] == "filename1"
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store_with_docs", [("elasticsearch")], indirect=True)
@pytest.mark.parametrize("retriever_with_docs", ["elasticsearch"], indirect=True)
def test_elasticsearch_retrieval_filters(retriever_with_docs, document_store_with_docs):
res = retriever_with_docs.retrieve(query="Who lives in Berlin?", filters={"name": ["filename1"]})
assert res[0].text == "My name is Carla and I live in Berlin"
assert len(res) == 1
assert res[0].meta["name"] == "filename1"
res = retriever_with_docs.retrieve(query="Who lives in Berlin?", filters={"name":["filename1"], "meta_field": ["not_existing_value"]})
assert len(res) == 0
res = retriever_with_docs.retrieve(query="Who lives in Berlin?", filters={"name":["filename1"], "not_existing_field": ["not_existing_value"]})
assert len(res) == 0
res = retriever_with_docs.retrieve(query="Who lives in Berlin?", filters={"name":["filename1"], "meta_field": ["test1","test2"]})
assert res[0].text == "My name is Carla and I live in Berlin"
assert len(res) == 1
assert res[0].meta["name"] == "filename1"
res = retriever_with_docs.retrieve(query="Who lives in Berlin?", filters={"name":["filename1"], "meta_field":["test2"]})
assert len(res) == 0